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Approximation by Simple Poles – Part II: System
Level Synthesis Beyond Finite Impulse Response

Michael W. Fisher, Gabriela Hug, and Florian Dörfler

Abstract—In Part I, a novel Galerkin-type method for finite
dimensional approximations of transfer functions in Hardy space
was developed based on approximation by simple poles. In Part
II, this approximation is applied to system level synthesis, a
recent approach based on a clever reparameterization, to develop
a new technique for optimal control design. To solve system
level synthesis problems, prior work relies on finite impulse
response approximations that lead to deadbeat control, and
that can experience infeasibility and increased suboptimality,
especially in systems with large separation of time scales. The
new design method does not result in deadbeat control, is convex
and tractable, always feasible, can incorporate prior knowledge,
and works well for systems with large separation of time
scales. Suboptimality bounds with convergence rate depending
on the geometry of the pole selection are provided. An example
demonstrates superior performance of the method.

Index Terms—System level synthesis, optimal control, H∞
control, optimization

I. INTRODUCTION

In Part I [1] the approximation by a finite collection
of transfer functions with simple poles was studied as a
Galerkin-type method for approximating transfer functions
in Hardy space. The present paper applies this simple pole
approximation (SPA) to optimal design of linear feedback
controllers. A powerful approach for solving optimal control
problems involves not directly optimizing over the controller,
but rather over an affine function of a closed-loop transfer
function (which depends implicitly on the controller), and then
recovering the optimal controller that realizes this closed-loop
behavior afterwards. Examples include sensitivity minimiza-
tion [2], the Youla parameterization [3], Q-parameterization
[4], input-ouput parameterization (IOP) [5], and system level
synthesis (SLS) [6], [7]. For the present paper, we focus on the
closed-loop system responses for state feedback controllers,
and so restrict our attention to SLS rather than sensitivity min-
imization (which minimizes a different closed-loop transfer
function), Youla or Q-parameterization (which do not directly
parameterize using the closed-loop transfer function) or IOP
(which focuses on output feedback).

Mixed H2/H∞ control synthesis is valuable for appli-
cations and has a long history (see, e.g., [8]). However, it
remains challenging to solve efficiently as methods for H2
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and H∞ synthesis alone do not readily yield optimal solutions
to mixed H2/H∞ synthesis. The SLS reparameterization for
mixed H2/H∞ synthesis results in a convex but infinite
dimensional optimization problem. In order to solve it, prior
work [9] has approximated that the closed-loop responses are
finite impulse responses (FIR) in order to arrive at a tractable
finite dimensional optimization problem. However, this results
in deadbeat control (DBC), which often experiences poorly
damped oscillations between discrete sampling times that can
even persist in steady state, as well as lack of robustness to
model uncertainty and parameter variations because of the high
control gains required to reach the origin in finite time [10].
We denote SLS with the FIR approximation by DBC for the
remainder of the paper.

With DBC, the number of poles in the closed-loop transfer
functions is equal to the length of the FIR, potentially resulting
in large numbers of poles that can lead to high computational
complexity for the control design, lack of robustness in the
resulting controller, and implementation challenges in practice
[11, Chapter 19]. This is especially problematic when the
optimal solution has a long settling time, such as in systems
with large separation of time scales, where short sampling
times are needed to capture the fast dynamics, which are also
coupled with much slower dynamics. This leads to closed-loop
impulse responses settling only after a large number of time
steps. In addition, FIR closed-loop responses have all poles
at the origin, which results in infeasibility in case of stable
but uncontrollable poles in the plant. To resolve this, DBC
introduces a slack variable enabling constraint violation, which
leads to additional suboptimality [9]. Furthermore, in this case
DBC leads to a quasi-convex problem, requiring an iterative
approach such as golden section search to solve rather than
a single convex optimization [9]. This approach then requires
inversion of a transfer function with order equal to the length
of the FIR, which is potentially large and may be numerically
unstable, to recover the optimal closed-loop transfer functions
and resulting controller [9].

The present paper combines SLS with SPA [1] to develop
a new control method which addresses these limitations.
This approach is not FIR, so it does not suffer from the
drawbacks of deadbeat control. Moreover, the number of poles
is independent of the settling time of the optimal closed-loop
responses, and therefore SPA even works well for systems
with large separation of timescales. It results in a convex and
tractable optimization for the design, avoiding the need for
iterative methods, does not need to invert transfer functions
to recover the optimal closed-loop solution, requires only a
small number of poles, guarantees feasibility for stabilizable
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systems without introducing slack variables, and additional
suboptimality resulting from these can be avoided. Finally, if
prior information is known about the optimal solution, such
as the locations of some of the optimal poles (e.g., for model
matching [12], model reference control [13], design based
on the internal model principle [14], expensive control [15,
Theorem 3.12(b)], etc.), then these can be incorporated directly
into the design for improved performance.

A suboptimality certificate is provided which shows the
convergence rate of SPA to the ground-truth optimal solution
based on the geometry of the pole selection. Unlike a similar
certificate for DBC, this does not require a long enough time
horizon for the optimal impulse response to decay to be valid,
and its convergence rate does not depend on this decay rate.
This certificate is then specialized to a particular pole selection
based on an Archimedes spiral as in [1, Theorem 4]. An
example shows superior performance of SPA over DBC, and
is fully reproducible with all code publicly available [16].

The paper is organized as follows. Section II provides
preliminaries and problem setup, Section III provides the SPA
method and suboptimality certificates, Section IV shows an il-
lustrative example, Section V gives the proofs, and Section VI
offers concluding remarks.

II. PRELIMINARIES

We use the same notation as in Part I [1], and refer the
reader to the preliminaries and main results sections there for
further details. Recall also Assumptions A1-A5 from Part I.

Consider the following LTI system in discrete time

x(k + 1) = Ax(k) +Bu(k) + B̂w(k)

y(k) = Cx(k) +Du(k)
(1)

where x(k) ∈ Rn, u(k) ∈ Rp, w(k) ∈ Rq , and y(k) ∈ Rm are
the state, controller input, disturbance input, and performance
output vectors at time step k, respectively. Let σ be the stable
plant poles (i.e., the stable eigenvalues of A). It will be useful
to introduce the following related system

x(k + 1) = Ax(k) +Bu(k) + v(k)

y(k) = Cx(k) +Du(k)

where v(k) ∈ Rn and the other signals are defined analogously
to (1). Consider a linear (possibly dynamic) state feedback
control law of the form u(z) = K(z)x(z) where K ∈ RH∞,
and let Tdesired(z) be some desired closed-loop transfer func-
tion for model reference or model matching control (note that
we can set Tdesired(z) = 0 if desired). For any signals a(z)
and b(z), let Ta→b(z) denote the closed-loop transfer function
from a(z) to b(z). For any transfer function Φ, let I(Φ) and
C(Φ) denote its impulse response and convolution (i.e. causal
Toeplitz) operators, respectively (see [1] for more details). The
goal is to choose a controller K(z) that is a solution to the
mixed H2/H∞ [11], [17] optimal control problem given by

min
K(z)
||Tw→y(z)− Tdesired(z)||

H2

+ λ ||Tw→y(z)− Tdesired(z)||
H∞

s.t. Tv→x(z), Tv→u(z) ∈ 1

z
RH∞,

(2)

where λ ∈ [0,∞] is constant. As Tw→y(z) is nonconvex in
K(z), (2) is known to be a challenging problem. We make the
following feasibility assumption:

(A6) A solution to (2) exists, i.e., (A,B) is stabilizable,
and the optimal closed-loop transfer functions are rational
(hence they have finitely many poles).

While one can construct pathological examples where this
assumption does not hold (e.g., a controllable SISO system
with y = x and Tdesired(z) = e

1
z ), in the standard mixed

H2/H∞ setting Assumption A6 is satisfied automatically [18].
By Assumption A6 there exists an optimal solution

(T ∗v→x, T
∗
v→u) to (2). As T ∗v→x, T

∗
v→u ∈ 1

zRH∞, we can write
their partial fraction decomposition as

T ∗v→u(z) =
∑

q∈Q

∑m∗q

j=1
H∗(q,j)

1

(z − q)j

T ∗v→x(z) =
∑

q∈Q̂

∑m̂q

j=1
G∗(q,j)

1

(z − q)j
(3)

where Q and Q̂ are finite sets of stable poles closed under
complex conjugation, H∗(q,j) and G∗(q,j) are coefficient matri-
ces, and m∗q and m̂q are the multiplicities of the pole q in
T ∗v→u and T ∗v→x, respectively. It will be shown (in the proof
of Lemma 2) that the following relationship between the poles
Q and Q̂ holds: Q̂ ⊂ Q∪ σ. Thus, each pole of T ∗v→x must be
a pole of at least one of T ∗v→u and the plant.

A recent approach was proposed to solve problem (2) for the
special case, where y = [ (Qx)ᵀ (Ru)ᵀ ]

ᵀ for constant matrices
Q and R, Tdesired(z) = 0, and B̂ = I . This approach is known
as system level synthesis (SLS) [9], and the key idea is to
reparameterize the control design in terms of the closed-loop
transfer functions Φx(z) = Tv→x(z) and Φu(z) = Tv→u(z).
This transforms (2) into an infinite dimensional convex opti-
mization problem at the price of the additional affine constraint

(zI −A)Φx −BΦu = I (4)

After solving (2) subject to (4), a controller that yields the
optimal closed-loop responses can be recovered via K(z) =
Φu(z)Φ−1x (z), and realizations of K(z) exist which do not
require transfer function inversion.

A. Finite Impulse Response Approximation

To obtain a tractable optimization problem, in [9] the FIR
approximation is made for the closed-loop transfer functions
Φx and Φu, i.e., Φx(z) =

∑T
i=1Giz

−i and Φu(z) =∑T
i=1Hiz

−i where Gi and Hi are coefficient matrices and
T is the length of the FIR, resulting in DBC. For an uncon-
trollable plant it is not feasible to achieve FIR closed-loop
transfer functions, so to maintain feasibility DBC introduces a
slack variable V that allows (4) to be violated. The objective
then becomes non-convex, so DBC uses a quasi-convex upper
bound of the objective [9]. The true (i.e., realized) closed-loop
responses are then given by Tv→x(z) = Φx(z)

(
I + V

zT

)−1
and Tv→u(z) = Φu(z)

(
I + V

zT

)−1
. Let J∗ be the optimal cost

of (2), J(T ) the optimal cost of DBC with an FIR of length
T , and C∗, ρ∗ > 0 such that ||I(T ∗v→x)(k)||2 ≤ C∗ρ

k
∗ for all

k ≥ 0. Then for T sufficiently large such that C∗ρT∗ < 1, DBC
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is feasible and satisfies the following suboptimality bound [9,
Theorem 4.7] for some c > 0:

J(T )− J∗

J∗
≤ C∗ρ

T
∗

1− C∗ρT∗

(
1 +

λc

1− ρT∗

)
. (5)

When ρ∗ is small (i.e., the optimal closed-loop response is
slow), C∗ρT∗ < 1 may require large T , the convergence rate
of C∗ρT∗ in (5) is slow, and the term 1

1−C∗ρT∗
(which arises

from the slack variable V ) will further slow convergence.

III. MAIN RESULTS

A. Simple Pole Approximation (SPA) Control Design

To introduce our new method, we begin by reformulating
(2) using the SLS reparameterization, which results in the fol-
lowing convex but infinite dimensional optimization problem
which is a strict generalization of the formulation in [9]:

Recall that σ are the stable poles of the plant, where each
q ∈ σ has multiplicity mq , and P represents a selection of
poles within the unit disk [1]. To obtain a tractable optimiza-
tion problem, we approximate Φx and Φu using P and σ by

Φu(z) =
∑

p∈P
Hp

1

z − p

Φx(z) =
∑

p∈P
Gp

1

z − p
+
∑

q∈σ

∑mq+1

i=1
G(q,i)

1

(z − q)i
(6)

where Hp, Gp, and G(q,i) are coefficient matrices. We refer
to this as the simple pole approximation (SPA) since all of
the poles of Φu are simple. Lemma 1 shows that SPA is
always feasible for (A,B) stabilizable, and its proof explains
the asymmetry in the poles of Φx,Φu due to the plant poles.

Lemma 1. Under Assumption A6, the SPA of (6) yields a
feasible solution for (2) with the SLS constraint (4).

Although it is possible to select any poles P ⊂ D for the
SPA method, we provide several recommendations that often
lead to improved performance. First, we suggest to include
the stable poles of the plant σ in P to allow the design to
cancel out any controllable modes of the plant for which it
is advantageous to do so. In addition, for any poles of the
optimal solution which are known a priori (see Section I),
including these in P can lead to a dramatic improvement in
performance. For the remaining poles, the Archimedes spiral
is a natural choice as it provides an approximately even pole
selection over D and converges at the rate (|P|+ 2)−1/2 [1].

For any q ∈ σ, let m̃q = 1 if q ∈ P and m̃q = 0 otherwise.
Then the SPA of (6) applied to (2) subject to the SLS constraint
(4) results in the following optimal control design problem,
consisting of the objective

min
Hp,Gp,G(q,i)

∣∣∣∣∣∣I(CΦxB̂) + I(DΦuB̂)− I(Tdesired)
∣∣∣∣∣∣
F

+ λ
∣∣∣∣∣∣C(CΦxB̂) + C(DΦuB̂)− C(Tdesired)

∣∣∣∣∣∣
2
,

(7)

subject to the following SLS constraints (whose form given
below is derived in the proof of Lemma 2):

G(q,2) + (qI −A)G(q,1) −BHq = 0, ∀ q ∈ σ ∩ P

(pI −A)Gp −BHp = 0, ∀ p ∈ P− σ
G(q,i+1) + (qI −A)G(q,i) = 0, ∀ q ∈ σ,

i ∈ {1 + m̃q, ...,mq}
(qI −A)G(q,mq+m̃q) = 0, ∀ q ∈ σ∑

p∈P−σ
Gp +

∑
q∈σ

G(q,1) = I

(8)

and the impulse responses

I(Φu)(k) =
∑
p∈P

pk−1Hp

I(Φx)(k) =
∑

p∈P−σ

pk−1Gp +
∑
q∈σ

mq+1∑
i=1

pk−i
(
k − 1

i− 1

)
G(q,i).

(9)

As the poles of Φx,Φu lie in σ ∪ P, which are stable poles,
Φx,Φu ∈ 1

zRH∞. It is straighforward to see that in (8)-(9)
the SLS constraints and the impulse responses are affine and
linear, respectively, in the coefficients Hp, Gp, and G(q,i). As
the impulse responses I and convolution operators C appearing
in the objective (7) are linear in the impulse responses of Φx
and Φu, this implies that the terms inside the norms || · ||F
and || · ||2 are affine in the coefficients Hp, Gp, and G(q,i).
Therefore, since || · ||F and || · ||2 are convex, the SPA control
design (7)-(9) is convex.

As representations of I and C would require matrices of
infinite size, in order to evaluate the norms || · ||F and || · ||2
in the objective (7) in practice, we introduce a finite T > 0
and replace all instances of I and C in (7) by IT and CT ,
respectively (see [1] for the notation). Then these norms
become the standard Frobenius and spectral matrix norms, so
(7)-(9) can be formulated as a tractable semidefinite program
(SDP), and as a quadratic program (QP) in the special case
of H2 design (i.e., λ = 0). As the dimension of (7)-(9) is
independent of the time horizon T , by iteratively increasing
T (i.e., T → 2T ) the Frobenius and spectral norms in the
objective will approximate the true H2 and H∞ norms, re-
spectively, to within any arbitrary numerical tolerance without
increasing the dimension of the underlying optimization.

As feasibility is guaranteed for SPA by Lemma 1 and (7)-
(9) is convex, unlike with DBC there is no need to introduce
a slack variable or use iterative quasi-convex optimization
methods for SPA. Instead, SPA can be solved with a single
convex optimization (a SDP or QP), and then the closed-loop
responses are given by Tv→x(z) = Φx(z) and Tv→u(z) =
Φu(z), which do not require inverting transfer functions like
DBC does. Furthermore, note that the poles in P can be chosen
to lie anywhere within the open unit disk, so this method does
not result in FIR closed-loop transfer functions and, hence,
avoids deadbeat control.

B. Suboptimality Bounds
Recall that d(z,P) is the distance from z to P, that

maxz∈Q d(z,P) measures the geometric approximation error
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between approximating poles P and optimal poles Q, and
D(P) = maxz∈D d(z,P) measures the worst case geometric
approximation error (for unknown Q). In addition, r ∈ (0, 1)
is such that P ⊂ Br, and δ is a measure of the minimum
distance between each approximating pole in P and σ (see [1]
for further details). Also, recall Assumptions A1-A5 from Part
I [1]. Our main theoretical result shows that the relative error
of the SPA method decays at least linearly with D(P).

Theorem 1 (General Suboptimality Bound). Let J∗ denote
the optimal cost of (2), and let J(P) denote the optimal cost
of (7)-(9) for any choice of P. Suppose Assumption A6 is
met, and P satisfies Assumptions A1-A5. Then there exists a
constant K̂ = K̂(Q, G∗(q,j), H

∗
(q,j), r, δ) > 0 such that

J(P)− J∗

J∗
≤ K̂D(P). (10)

While the DBC suboptimality bound in (5) only holds for T
sufficiently large such that ||I(T ∗v→x)(T )||2 ≤ C∗ρ

T
∗ < 1, the

SPA bound in (10) does not have this requirement. The con-
stant term in the DBC bound is expressed in terms of the H∞
norm of the optimal controller, whereas K̂ from Theorem 1
depends on the partial fraction decomposition of the optimal
closed-loop responses. Furthermore, the DBC bound includes
a multiplicative term 1

1−C∗ρT∗
resulting from the slack variable,

whereas the SPA bound has no such term because it does not
need a slack variable. Finally, the convergence for the DBC
bound depends on the rate of decay of the optimal closed-
loop impulse response, whereas the SPA bound convergence
depends on the distance between P and the optimal closed-
loop poles. Therefore, SPA is preferable when the optimal
impulse response takes long to decay, such as in stabilizable
systems with large separation of time scales. However, DBC
may be preferable when the optimal responses decay fast,
or when many poles are desired, since its convergence rate
approaches exponential as the number of poles approaches
infinity. In addition, if some optimal poles can be included
in P due to prior knowledge (see Section III-A), this will
typically have the effect of decreasing both D(P) and K̂
in (10), significantly reducing the relative error of SPA. In
contrast, it is not clear how such prior knowledge could be
included with DBC to reduce its relative error.

Corollary 1 shows that, for the Archimedes spiral pole
selection in [1], the relative error of SPA converges to zero
at the rate (|P|+ 2)−1/2 since |Pn| = 2n− 2 for each n > 0.

Corollary 1 (Spiral Suboptimality Bound). For each even
integer n > 0, let Pn denote the selection of (2n − 2) poles
given by pk for k ∈ [−(n− 1), n− 1], where

θk = 2
√
πk, rk =

√
k

n
, pk = (rk, θk), p−k = (rk,−θk).

Then there exists a constant K̂ = K̂(Q, G∗(q,j), H
∗
(q,j)) > 0

and N > 0 such that n ≥ N implies

J(Pn)− J∗

J∗
≤ K̂√

n
. (11)

Note that N in Corollary 1 only needs to be chosen to
ensure that D(PN ) < 1, |PN | ≥ mmax, and that δ > 0 for

PN , and so is typically satisfied in practice with small N (see
the remark following [1, Theorem 3]).

IV. NUMERICAL EXAMPLE

To compare DBC and SPA, we consider the example of
using a power converter to provide frequency and voltage
control services to the power grid, which arises naturally as a
result of interfacing renewable generation to the grid [19]. This
example served as the motivation to develop the SPA method,
because of the inadequate performance of DBC resulting from
the large separation of time scales in power systems containing
power converter interfaced devices [20]. Let w represent the
frequency and voltage magnitude at the connection point, and
let y represent the power output of the converter. Then this
can be formulated in the form of (2) with matrices given by

A =

[
0.988 0 0 0 0

0 0 0 0 0
1 0 0 0 0
0 0 0 0.995 0
0 0 0 0 0.9

]
, B =

[
0 0
0 0
0 0

0.005 0
0 0.1

]
, D =

[
0 0
0 0

0.01 0
0 0.01

]

B̂ =

[−0.0001 0
0 1

0.0066 0
0 0
0 0

]
, C =

[
0 0.829 −0.428 1.02 0
0 0.428 0.829 0 −1.02
0 0 0 0 0
0 0 0 0 0

]

Tdesired(z) =
[
T ŷdesired(z)

0

]
=

[ −5.3e−5
z−0.999 0

0 −0.1
z−0.999

0 0
0 0

]
.

For ease of comparison to the ground-truth optimal solution
we choose λ = 0, and we note that an infinite impulse
response method for SLS exists for this special case [21], but
we emphasize that similar results to those shown here hold
for λ 6= 0 (although the exact ground-truth optimal solution is
difficult to obtain). With λ = 0, the objective is to minimize∣∣∣∣∣∣[ Tw→ŷ(z)−T ŷdesired(z)

0.01 Tw→u(z)

]∣∣∣∣∣∣
H2

where ŷ = Cx. Let t ∈ R and k ∈ Z denote continuous and
discrete time, respectively, with a sample time of h = 1 ms
chosen to avoid aliasing from the fast converter dynamics.

To solve (2), for DBC we use golden section search as sug-
gested in [9, p. 380], which involves solving SDPs iteratively
to find Φx and Φu. Then, Tw→y can be recovered from Φx
and Φu by inverting

(
I + V

zT

)
(see Section II). For SPA, we

let P consist of the stable poles of the plant and Tdesired, and
select the remaining poles from the Archimedes spiral as in [1,
Theorem 4]. Then, solving (2) using SPA only requires a single
SDP, and then Tw→y is given by a linear transformation of
Φx and Φu, so no transfer function inversion is necessary. To
solve the SDPs in each case, Matlab was used with YALMIP
and the solver MOSEK. This control design implementation
is available online [16].

The DBC and SPA control design approaches are run for
varying numbers of poles. For DBC, the problem is infeasible
for 29 or less poles, converges in 18 (golden section) iterations
for 30 poles, and converges in 7 iterations for 300 poles. As
DBC includes constraint violations, Φx and Φu are not equal to
Tv→x and Tv→u for DBC, and recovery of Tv→x and Tv→u for
DBC requires inverting

(
I + V

zT

)
(see Section II), but for large

numbers of poles (i.e., large T ) this leads to out of memory and
numerical errors. Therefore, the figures show only the result of
using Φx and Φu in place of the true system responses Tv→x
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Fig. 1. The impulse responses of control designs for SLS with the FIR
approximation (DBC) and simple pole approximation (SPA) as a function of
the number of closed-loop poles. The desired transfer function Tdesired and
the ground-truth optimal solution are also shown.

and Tv→u for DBC, so the true DBC results are actually worse
than the DBC results shown in these figures. The SPA method
is feasible for any number of poles, and requires only one SDP
for each number of poles. It is run for 7 and 15 poles, and the
true system responses are easily recovered.

The impulse responses for the solutions of DBC, SPA, and
the optimal and desired transfer functions are shown in Fig. 1.
For DBC, the impulse response is close to the optimal impulse
response only for the first 30 ms or 300 ms for 30 and 300
poles, respectively, after which the impulse response becomes
zero (an undesirable but inevitable feature of DBC). However,
the optimal impulse response takes several seconds to decay,
so overall the matching is very poor for DBC, with 300 poles
only slightly better than with 30 poles. In contrast, for SPA the
impulse response shows a small initial mismatch during the
first few milliseconds, but after this the matching is very close,
with the 15 pole solution having slightly better matching than
the 7 pole case. From the impulse responses it is clear that
SPA is much closer to the optimal solution, and with orders
of magnitude fewer poles.

The step responses for the solutions of DBC, SPA, and the
optimal and desired transfer functions are shown in Fig. 2. For
DBC, the step responses deviate greatly from the optimal step
response, with the 300 pole solution closer than with 30 poles.
With SPA the step responses are very close to the optimal
step response, with the 15 pole solution having slightly better
matching during the initial transient than the 7 pole case. From
the step responses it is clear that SPA results in much closer
matching with the optimal transfer function than DBC, and
with far fewer poles.

V. PROOFS

Proof of Lemma 1. Working in coordinates where A is in
Jordan normal form, we may have A = diag(Au, Ac)
and B =

[
Bᵀ
u Bᵀ

c

]ᵀ
where (Ac, Bc) is controllable and

(Au, Bu) is not. As (Ac, Bc) is controllable, there exists

Fig. 2. Step responses of control designs for SLS with the FIR approximation
(DBC) and simple pole approximation (SPA) as a function of the number of
closed-loop poles. The desired transfer function Tdesired and the ground-truth
optimal solution are also shown.

Kc such that the eigenvalues of Ac + BcKc lie in P. Let

K =
[
0 Kc

]
. Then A + BK =

[
Au BuKc

0 Ac +BcKc

]
so Φx(z) =

[
(zI −Au)−1 ?

0 (zI − (Ac +BcKc))
−1

]
and

Φu(z) = KΦx(z) =
[
0 Kc(zI − (Ac +BcKc))

−1]. Thus,
since (A,B) is stabilizable, the poles of Φx lie in P ∪ σ and
contain the uncontrollable plant poles, while the poles of Φu
lie in P. So, Φx,Φu ∈ 1

zRH∞ and satisfy (4).

The key technical result required to prove Theorem 1 is
Lemma 2, which extends the approximation error bounds of
[1, Theorem 1] to bound the error between a feasible solution
(Φu,Φx) of (7)-(9) and the optimal solution (Φ∗u,Φ

∗
x) of (2).

Lemma 2. Under the conditions of Theorem 1, let (Φ∗x,Φ
∗
u)

denote the optimal solution to (2). Then there exist Φx,Φu ∈
1
zRH∞ which are a feasible solution to (7)-(9), and constants
Ku
∞,K

u
2 ,K

x
∞,K

x
2 > 0, such that

||Φu − Φ∗u||H∞ ≤ Ku
∞D(P), ||Φu − Φ∗u||H2 ≤ Ku

2D(P)
(12)

||Φx − Φ∗x||H∞ ≤ Kx
∞D(P), ||Φx − Φ∗x||H2 ≤ Kx

2D(P).
(13)

Before proving Lemma 2, we will require several technical
results as given in the next few lemmas and corollaries.
Lemma 3 bounds the distance between two simple transfer
functions in terms of the distance between their poles.

Lemma 3. Let k be any integer, m a positive integer, and
z ∈ D. Let q, p1, ..., pm ∈ D, and let d̂(q) = maxi |pi − q|. If
z ∈ ∂D, let δ = d(∂D, {pi}mi=1) > 0 and η = d(q, ∂D) > 0;
if not, suppose d (z, {pi}mi=1) ≥ δ > 0 and d(z, q) ≥ η > 0.
Then there exists K > 0 such that∣∣∣∣ (z − q)k∏m

i=1(z − pi)
− (z − q)k−m

∣∣∣∣ ≤ Kd̂(q).
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Proof of Lemma 3. Let P = {p1, ..., pm}. We compute∣∣∣∣∣∣∣∣
(z − q)k
m∏
i=1

(z − pi)
− (z − q)k−m

∣∣∣∣∣∣∣∣ =

∣∣∣∣(z − q)m − m∏
i=1

(z − pi)
∣∣∣∣∣∣∣∣(z − q)m−k m∏

i=1

(z − pi)
∣∣∣∣ .

Noting that the proofs of [1, Eqs. 10, 12] are still valid for
z ∈ D (i.e. |z| ≤ 1), applying them here we have that∣∣∣∣∣(z − q)m −

m∏
i=1

(z − pi)

∣∣∣∣∣ ≤ ((|q|+ 2)m − (|q|+ 1)m) d̂(q).

Furthermore,∣∣∣∣∣(z − q)m−k
m∏
i=1

(z − pi)

∣∣∣∣∣ ≥ d(z, q)m−kd(z,P)m ≥ ηm−kδm.

Combining these two inequalities implies that∣∣∣∣∣∣∣∣
(z − q)k
m∏
i=1

(z − pi)
− (z − q)k−m

∣∣∣∣∣∣∣∣ ≤ Kd̂(q)

K =
((|q|+ 2)m − (|q|+ 1)m)

ηm−kδm
.

Lemmas 4 and 5 prove useful identities related to partial
fraction decompositions of approximating transfer functions.

Lemma 4. Let k be a nonnegative integer, m a positive integer

and q, p1, ..., pm ∈ D. Let cpi =

(∏m
j=1
j 6=i

(pi − pj)
)−1

. Then

a. For k < m

m∑
i=1

(pi − q)kcpi
1

z − pi
=

(z − q)k
m∏
i=1

(z − pi)
.

b. For k ≥ m
m∑
i=1

(pi − q)kcpi
1

z − pi
=

(z − q)k
m∏
i=1

(z − pi)
−
k−m∑
i=0

bi(z − q)i

bi =

m∑
j=1

(pj − q)k−1−icpj .

Proof of Lemma 4. First consider Case (a). Write the partial
fraction decomposition

(z − q)k∏m
i=1(z − pi)

=
∑m

i=1
κi

1

z − pi
.

Multiplying both sides by
∏m
i=1(z − pi) and evaluating at

z = pi implies that

κi =
(pi − q)k∏m
j=1
j 6=i

(pi − pj)
= (pi − q)kcpi

which completes the proof for Case (a).

Next consider Case (b). Write the partial fraction decompo-
sition

(z − q)k∏m
i=1(z − pi)

=
∑m

i=1
κi

1

z − pi
+
∑k−m

i=0
bi(z − q)i.

(14)

Multiplying by
∏m
i=1(z−pi) and evaluating at z = pi implies

κi =
(pi − q)k∏m
j=1
j 6=i

(pi − pj)
= (pi − q)kcpi .

Differentiating (14) i times with respect to z and evaluating
at z = q implies that

0 = −i!
∑m

j=1
(pj − q)k−1−icpj + i!bi

for i ∈ {0, ..., k −m}, so

bi =
∑m

j=1
(pj − q)k−1−icpj .

For the remainder of this section, λ ∈ σ will represent a
stable eigenvalue of the A matrix of the plant. Let m and n be
integers, and define the rising factorial m(n) =

∏n−1
k=0(m+ k)

and the falling factorial mn =
∏n−1
k=0(m − k). For m and n

nonnegative, letting m! denote the standard factorial, we have
m(n) = (m+n−1)!

(m−1)! and mn = m!
(m−n)! . Note:

Fact 3. (−1)nm(n) = (−m)n
Fact 4.

∑n
j=0

(
n
j

)
mj(m

′)n−j = (m+m′)n.

Lemma 5. Let k and m be positive integers, z ∈ ∂D, and
q, λ, p1, ..., pm ∈ D with d(λ, {pi}mi=1) ≥ δ > 0 and d(λ, q) ≥
η > 0. Choose constants cpi as in Lemma 4. Then

a. There exists K > 0 such that
m∑
i=1

cpi
(λ− pi)−k

z − pi
=

(λ− z)−k
m∏
i=1

(z − pi)
− r(z)

(λ− z)k

r(z) =

k−1∑
n=0

an(λ− z)n

and

lim
z→λ

d

dzl

(
r(z)

m∏
i=1

(z − pi)

)

=


1, l = 0

0, l ∈ {1, ..., k − 1}(
(−1)l+1m(l)

(λ−q)m+l + ε
) m∏
i=1

(λ− pi), l = k

|ε| ≤ Kd̂(q).

b. There exist K ′0, ...,K
′
k−1 > 0 such that

m∑
i=1

cpi
(pi − q)m

(λ− pi)k
1

z − pi
=

(z − q)m

(λ− z)k
m∏
i=1

(z − pi)

−
k−1∑
n=0

an
(λ− z)k−n
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|a0 − 1| ≤ K ′0d̂(q), |an| ≤ K ′nd̂(q), n ∈ {1, ..., k − 1}.

Proof of Lemma 5. For l ∈ {0,m}, write the partial fraction
decomposition

(z − q)l

(λ− z)k
∏m
i=1(z − pi)

=
∑m

i=1
κi

1

z − pi
+

r(z)

(λ− z)k

r(z) =
∑k−1

n=0
an(λ− z)n.

(15)

Multiplying both sides by (λ− z)k
∏m
i=1(z − pi) yields

(z − q)l = (λ− z)k
m∑
i=1

κi

m∏
j=1
j 6=i

(z − pj) + r(z)

m∏
i=1

(z − pi).

(16)

Evaluating (16) at z = pi implies that

κi = cpi(pi − q)l(λ− pi)−k.

For n any nonnegative integer, define

bn =

(
d

dzn
r(z)

)
(λ) = (−1)nn!an (17)

dn =

(
d

dzn

∏m

i=1
(z − pi)

)
(λ) =

∑
v∈Rn
vi∈Im∀i

vi 6=vj for i6=j

∏
k∈Im
k 6∈v

(λ− pk)

(18)

en =

(
d

dzn
(z − q)l

)
(λ) = ln(λ− q)l−n. (19)

Note that

lim
z→λ

d

dzn

(
r(z)

∏m

i=1
(z − pi)

)
=
∑n

j=0

(
n

j

)
djbn−j (20)

for any nonnegative integer n. Differentiating (16) n times
with respect to z, and evaluating at z = λ implies that

en = lim
z→λ

d

dzn

(
r(z)

m∏
i=1

(z − pi)

)
=

n∑
j=0

(
n

j

)
djbn−j (21)

for n ∈ {0, ..., k − 1}. Dividing by d0 and solving for bn
implies

bn =
en
d0
−
∑n

j=1

(
n

j

)
dj
d0
bn−j . (22)

Note that
dn
d0

=
∑
v∈Rn
vi∈Im∀i

vi 6=vj for i 6=j

∏
k∈v

1

λ− pk
.

Define

ε′n =
dn
d0
− mn

(λ− q)n
=
∑
v∈Rn
vi∈Im∀i

vi 6=vj for i 6=j

(∏
k∈v

1

λ− pk
− 1

(λ− q)n

)

since the number of terms in the sum is mn. Thus, by Lemma 3
there exists k′n > 0 such that

dn
d0

= mn
1

(λ− q)n
+ ε′n, |ε′n| ≤ k′nd̂(q). (23)

Consider first Case (a): l = 0. Then e0 = 1 and en = 0 for
n ∈ {1, ..., k− 1}. By (21), this implies the desired result for
n ∈ {0, ..., k−1}, so it suffices to prove the desired result for
n = k. By (22), b0 = 1

d0
. We claim that there exists kn > 0

such that

−
∑n

j=1

(
n

j

)
dj
d0
bn−j =

(−1)nm(n)

(λ− q)m+n
+ εn, |εn| ≤ knd̂(q)

(24)

for all n ∈ {1, ..., k}. Note that by (22), this implies that

bn = (−1)nm(n) 1

(λ− q)m+n
+ εn, |εn| ≤ knd̂(q) (25)

for n ∈ {1, ..., k−1}. We prove (24) by strong induction. For
the base case, first note that

b0 =
1

d0
=

1

(λ− q)m
+

(
1∏m

i=1(λ− pi)
− 1

(λ− q)m

)
=

1

(λ− q)m
+ ε0, |ε0| ≤ k0d̂(q)

(26)

where such k0 exists by Lemma 3. Then for n = 1 we have

−d1
d0
b0 = −

(
m

λ− q
+ ε′1

)(
1

(λ− q)m
+ ε0

)
= − m

(λ− q)m
− m

λ− q
ε0 −

1

(λ− q)m
ε′1 − ε0ε′1

= − m

(λ− q)m
+ ε1, |ε1| ≤ k1d̂(q)

k1 =
mk0
|λ− q|

+
k′1

|λ− q|m
+ k0k

′
1.

For the induction step, assume that (24) holds for all j ∈
{1, ..., n − 1}, which, together with (26), implies that (25)
holds for all j ∈ {0, ..., n− 1}. By (23) and (25) we have

−
n∑
j=1

(
n

j

)
dj
d0
bn−j = −

n∑
j=1

(
n

j

)(
mj

1

(λ− q)j
+ ε′n

)
∗
(

(−1)n−jm(n−j) 1

(λ− q)m+n−j + εn−j

)
= −

∑n

j=1

(
n

j

)
mj(−1)n−jm(n−j) 1

(λ− q)m+n
+ εn

εn = −
n∑
j=1

(
n

j

)(
mjεn−j
(λ− q)j

+
(−1)n−jm(n−j)ε′n

(λ− q)m+n−j + ε′nεn−j

)
|εn| ≤ knd̂(q)

kn =
∑n

j=1

(
n

j

)(
mjkn−j
|λ− q|j

+
m(n−j)k′n
|λ− q|m+n−j + kn−jk

′
n

)
.

So

−
∑n

j=1

(
n

j

)
dj
d0
bn−j

above
identity

= − 1

(λ− q)m+n

∑n

j=1

(
n

j

)
mj(−1)n−jm(n−j) + εn

Fact 3
= − 1

(λ− q)m+n

∑n

j=1

(
n

j

)
mj(−m)n−j + εn
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add 0
=

1

(λ− q)m+n

(−m)n −
n∑
j=0

(
n

j

)
mj(−m)n−j

+ εn

Fact 4
=

1

(λ− q)m+n
((−m)n − (m−m)n) + εn

0n=0
=

1

(λ− q)m+n
(−m)n + εn

Fact 3
= (−1)nm(n) 1

(λ− q)m+n
+ εn, |εn| ≤ knd̂(q).

Thus, (24) holds. Note that bk = 0 since r(z) is a polynomial
of order k − 1. Therefore, by (20) and (24) we have that

lim
z→λ

d

dzk

(
r(z)

∏m

i=1
(z − pi)

)
=
∑k

j=0

(
k

j

)
djbk−j

= d0bk +
∑k

j=1

(
k

j

)
djbk−j =

∑k

j=1

(
k

j

)
djbk−j

= (−d0)

(
−
∑k

j=1

(
k

j

)
dj
d0
bk−j

)
= (−d0)

(
(−1)km(k) 1

(λ− q)m+k
+ εk

)
, |εk| ≤ kkd̂(q)

which yields the result for Case (a). Next consider Case (b):
l = m. Then by (22) and (17)

a0 = b0 =
e0
d0

=
(λ− q)m∏m
i=1(λ− pi)

so

|a0 − 1| =
∣∣∣∣ (λ− q)m∏m

i=1(λ− pi)
− 1

∣∣∣∣ ≤ k0d̂(q)

where such k0 > 0 exists by Lemma 3. We claim that there
exist kn > 0 such that

|bn| ≤ knd̂(q) (27)

for n ∈ {1, ..., k−1}. We prove (27) by strong induction. For
the base case, note that by (22) and (23)

b1 =
e1
d0
− d1
d0
b0 =

m(λ− q)m−1

d0
−
(
m

1

λ− q
+ ε′1

)
e0
d0

=
m(λ− q)m−1

d0
−m 1

λ− q
(λ− q)m

d0
− ε′1

(λ− q)m∏m
i=1(λ− pi)

=
m(λ− q)m−1

d0
− m(λ− q)m−1

d0
− ε′1

(λ− q)m∏m
i=1(λ− pi)

= −ε′1
(λ− q)m
m∏
i=1

(λ− pi)
, |b1| ≤ k1d̂(q), k1 = k′1

|λ− q|m
m∏
i=1

|λ− pi|
.

For the induction step, assume (27) holds for all j ∈ {1, ..., n−
1}. By (22), (23), (19), and the induction hypothesis we have

bn
(22)
=

en
d0
−
∑n

j=1

(
n

j

)
dj
d0
bn−j

regrouping
terms=

en
d0
− dn
d0
b0 −

∑n−1

j=1

(
n

j

)
dj
d0
bn−j

(19)
(23)
=

mn(λ− q)m−n

d0
−
(
mn

1

(λ− q)n
+ ε′n

)
e0
d0

−
∑n−1

j=1

(
n

j

)(
mj

1

(λ− q)j
+ ε′j

)
bn−j

(19)
regrouping

=
mn(λ− q)m−n

d0
− mn(λ− q)m−n

d0

− ε′n(λ− q)m
m∏
i=1

(λ− pi)
−
∑n−1

j=1

(
n

j

)(
mj(λ− q)−j + ε′j

)
bn−j

cancel
= −ε

′
n(λ− q)m
m∏
i=1

(λ− pi)
−
n−1∑
j=1

(
n

j

)(
mj(λ− q)−j + ε′j

)
bn−j

|bn| ≤ knd̂(q)

kn = k′n
|λ− q|m
m∏
i=1

|λ− pi|
+

n−1∑
j=1

(
n

j

)(
mj |λ− q|−j + k′j

)
kn−j .

Thus, (27) holds. Combining (27) with (15) and (17) yields
the result for Case (b).

For z ∈ C, let J(z) denote an elementary Jordan block
with eigenvalue z. In the proof of Lemma 2 this will refer
to the elementary Jordan blocks of the A matrix of the plant.
Corollary 2 will help bound the error between the optimal and
approximating transfer functions in terms of D(P).

Corollary 2. Let k be a nonnegative integer, m a positive
integer, z ∈ ∂D, and q, λ, p1, ..., pm ∈ D with d(λ, {pi}mi=1) ≥
δ > 0 and d(λ, q) ≥ η > 0. Choose constants cpi as in
Lemma 4. Then

a. There exists K > 0 such that
m∑
i=1

cpi
(λ− pi)(k+1)

=

(
m− 1 + k

k

)
(λ− q)−(m+k) + ε

|ε| ≤ Kd̂(q).

b. There exists K > 0 such that∣∣∣∣∣
∣∣∣∣∣
m∑
i=1

cpi(pi − q)mJ(λ− pi)−1
1

z − pi

∣∣∣∣∣
∣∣∣∣∣
2

≤ Kd̂(q).

Proof of Corollary 2. First we prove Case (a). By
Lemma 5(a) we have∑m

i=1
cpi(λ− pi)−(k+1) = lim

z→λ

∑m

i=1
cpi(λ− pi)−k

1

z − pi

= lim
z→λ

1− r(z)
∏m
i=1(z − pi)

(λ− z)k
∏m
i=1(z − pi)

.

Furthermore, by Lemma 5(a), the numerator/deminator satisfy

lim
z→λ

1− r(z)
m∏
i=1

(z − pi) = 0, lim
z→λ

(λ− z)k
m∏
i=1

(z − pi) = 0.

As both the numerator and denominator approach zero as z →
λ, we can evaluate the limit using L’Hospital’s rule. For any
l ∈ {1, ..., k−1}, by Lemma 5(a), differentiating the numerator
and denominator l times and taking the limit as z → λ implies

lim
z→λ

d

dzl

(
1− r(z)

∏m

i=1
(z − pi)

)
= − lim

z→λ

d

dzl

(
r(z)

∏m

i=1
(z − pi)

)
= 0

lim
z→λ

d

dzl

(
(λ− z)k

∏m

i=1
(z − pi)

)
= 0.
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Therefore, we apply L’Hospital’s rule k times and use
Lemma 5(a) to obtain

m∑
i=1

cpi(λ− pi)−(k+1) =

limz→λ
d
dzk

(
1− r(z)

m∏
i=1

(z − pi)
)

limz→λ
d
dzk

(
(λ− z)k

m∏
i=1

(z − pi)
)

=

−
(
(−1)k+1m(k)(λ− q)−(m+k) + ε′

) m∏
i=1

(λ− pi)

(−1)kk!
m∏
i=1

(λ− pi)

=
m(k)

k!
(λ− q)−(m+k) − (−1)−k

1

k!
ε′

=

(
m+ k − 1

k

)
(λ− q)−(m+k) + ε, |ε| ≤ Kd̂(q).

This proves Case (a).
For Case (b), we first recall the following fact:

Fact 1. If there exist ki,j and d positive such that |Mi,j | ≤ ki,jd
for all i, j then there exists K > 0 such that ||M ||2 ≤ Kd.

By Fact 1 it suffices to show that for each l ∈ {0, ...,mq−1}
there exists kl > 0 such that the lth superdiagonal of the matrix
in the desired result satisfies∣∣∣∣∑m

i=1
cpi(pi − q)m(−1)l(λ− pi)−(l+1) 1

z − pi

∣∣∣∣ ≤ kld̂(q).

By Lemma 5(b) and since z ∈ ∂D,∣∣∣∣∑m

i=1
cpi(pi − q)m(−1)l(λ− pi)−(l+1) 1

z − pi

∣∣∣∣
absolute

value=

∣∣∣∣∑m

i=1
cpi(pi − q)m(λ− pi)−(l+1) 1

z − pi

∣∣∣∣
Lemma 5(b)

=

∣∣∣∣∣∣∣∣
(z − q)m

(λ− z)l+1
m∏
i=1

(z − pi)
−

l∑
n=0

an(λ− z)n−l−1

∣∣∣∣∣∣∣∣
triangle

inequality
≤

∣∣∣∣∣∣∣∣
(z − q)m − a0

m∏
i=1

(z − pi)

(λ− z)l+1
m∏
i=1

(z − pi)

∣∣∣∣∣∣∣∣+

l∑
n=1

|an|
|λ− z|−n+l+1

a0=1
+(a0−1)
≤

∣∣∣∣∣∣∣∣
(z − q)m −

m∏
i=1

(z − pi) + (1− a0)
m∏
i=1

(z − pi)

(λ− z)l+1
m∏
i=1

(z − pi)

∣∣∣∣∣∣∣∣
+
∑l

n=1
|an|(1− |λ|)n−l−1

triangle
inequality
≤

∣∣∣∣∣∣∣∣
(z − q)m
m∏
i=1

(z − pi)
− 1

∣∣∣∣∣∣∣∣ |λ− z|
−l−1 +

|1− a0|
|λ− z|l+1

+
∑l

n=1
|an|(1− |λ|)n−l−1

z∈∂D
≤

∣∣∣∣∣∣∣∣
(z − q)m
m∏
i=1

(z − pi)
− 1

∣∣∣∣∣∣∣∣ (1− |λ|)
−l−1 +

|1− a0|
(1− |λ|)l+1

+
∑l

n=1
|an|(1− |λ|)n−l−1 ≤ kld̂(q)

kl = K ′(1− |λ|)−l−1 +K ′0(1− |λ|)−l−1 +

l∑
n=1

K ′n(1− |λ|)n−l−1

where such K ′ > 0 exists by Lemma 3. This proves Case (b).

Lemma 6. Let m̃ ∈ {0, 1}, let mq,m > 0 be integers, and let
q ∈ D. Suppose that for each i ∈ {1, ...,m} we have matrices
G∗i and H∗i , and for each j ∈ {1, ..., i} we have matrices Hi

j

and Gij , and poles pij , such that the following hold:

Hi
j = cijH

∗
i , Gij = −J(q − pij)−1BHi

j . (28)

Then
m∑

i=1+m̃

i∑
j=1+m̃

Gij
1

z − pij

+ m̃

mq+1∑
l=2

J(0)l−2
m∑
i=1

BHi
1

1

(z − q)l

−
mq∑
l=1

J(0)l−1
m∑

i=1+m̃

i∑
j=1+m̃

Gij
1

(z − q)l

=

(
mq−1∑
l=0

J(0)lm̃
1

(z − q)l+2

)
BH∗1

+

m∑
i=1+m̃

 i∑
j=1+m̃

J(q − pij)−1
−cij
z − pij

(pij − q)mq

(z − q)mq

+

mq−i−1∑
l=0

mq−i−1−l∑
k=0

J(0)l
i∑

j=1+m̃

cij(p
i
j − q)mq−2−k−l

(z − q)mq−k

+ m̃ci1J(0)mq−1
1

(z − q)mq+1

)
BH∗i . (29)

Furthermore, for each i ∈ {1, ...,mq} and l ∈ {0, ...,mq−1},
there exists Ki,l > 0 such that each element in the lth super-
diagonal of the term multiplying BH∗i in (29) has a difference
from 1

(z−q)i+l+1 bounded in absolute value by Ki,lD(P).

Proof of Lemma 6. We begin by proving (29). For any i ∈
{1, ...m}, j ∈ {1, ..., i}, and k ∈ {1, ...,mq − 1} we have
that J(0)Gij = −cijJ(0)J(q − pij)

−1BH∗i . Writing J(0) =
J(q − pij) + (pij − q)I implies that J(0)Gij = −cijBH∗i −
cij(p

i
j − q)J(q − pij)−1BH∗i . Iterating this process yields

J(0)kGij =
∑k−1

l=0
−cijJ(0)k−1−l(pij − q)lBH∗i

− cij(pij − q)kJ(q − pij)−1BH∗i .
(30)

Then, applying Lemma 4(a) for k ≤ i− 1, setting z = q, and
noting that for m̃ = 1, cij contains a factor of 1

pij−q
gives∑i

j=1+m̃
cij(p

i
j − q)l = 0 (31)

for any i ∈ {1+m̃, ...,m} and l ∈ {1, ..., i−2}. Furthermore,
applying Lemma 4(a) for k = 1 and setting z = q implies∑i

j=1
cij = 0. (32)
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for any i ∈ {1 + m̃, ...,m} (and l = 0). Therefore, for any
i ∈ {1 + m̃, ...,m} and k ∈ {1, ...,mq − 1}

m̃J(0)k−1BHi
1 − J(0)k

∑i

j=1+m̃
Gij

(30)
(28)
=
∑k−1

l=0
J(0)k−1−lBH∗i

∑i

j=1+m̃
cij(p

i
j − q)l

+

i∑
j=1+m̃

cij(p
i
j − q)kJ(q − pij)−1BH∗i + m̃J(0)k−1ci1BH

∗
i

regroup
l=0 terms=

∑k−1

l=1
J(0)k−1−lBH∗i

∑i

j=1+m̃
cij(p

i
j − q)l

+
∑i

j=1+m̃
cij(p

i
j − q)kJ(q − pij)−1BH∗i

+ J(0)k−1BH∗i
∑i

j=1+m̃
cij + m̃J(0)k−1ci1BH

∗
i

combine last
two terms=

∑k−1

l=1
J(0)k−1−lBH∗i

∑i

j=1+m̃
cij(p

i
j − q)l

+
∑i

j=1+m̃
cij(p

i
j − q)kJ(q − pij)−1BH∗i

+ J(0)k−1BH∗i
∑i

j=1
cij

(31)
(32)
=
∑k−1

l=i−1
J(0)k−1−lBH∗i

∑i

j=1+m̃
cij(p

i
j − q)l

+
∑i

j=1+m̃
cij(p

i
j − q)kJ(q − pij)−1BH∗i

(56)
=
∑k−1

l=i−1
J(0)k−1−lBH∗i

∑i

j=1+m̃
cij(p

i
j − q)l

−
∑i

j=1+m̃
(pij − q)kGij . (33)

We compute

Φx(z)

(51)
(54)
=
∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

z − pij

+ m̃
∑mq+1

l=2
J(0)l−2

∑m

i=1
BHi

1

1

(z − q)l

−
∑mq

l=1
J(0)l−1

∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

(z − q)l
combining

terms in sum=
∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

z − pij

+

mq∑
l=2

m∑
i=1+m̃

m̃J(0)l−2BHi
1 − J(0)l−1

i∑
j=1+m̃

Gij

 1

(z − q)l

−
∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

z − q

+ m̃J(0)mq−1
∑m

i=1+m̃
BHi

1

1

(z − q)mq+1

+
∑mq−1

l=0
m̃J(0)lBH1

1

1

(z − q)l+2

(33)
=
∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

z − pij

+

mq∑
l=2

m∑
i=1+m̃

l−2∑
k=i−1

J(0)l−2−kBH∗i

i∑
j=1+m̃

cij(p
i
j − q)k

(z − q)l

−
∑mq

l=2

∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)l−1Gij

1

(z − q)l

−
∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

z − q

+ m̃J(0)mq−1
∑m

i=1+m̃
BHi

1

1

(z − q)mq+1

+
∑mq−1

l=0
m̃J(0)lBH1

1

1

(z − q)l+2
. (34)

Note that∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

z − pij

−
∑mq

l=2

∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)l−1Gij

1

(z − q)l

−
∑m

i=1+m̃

∑i

j=1+m̃
Gij

1

z − q
regrouping

=
∑m

i=1+m̃

∑i

j=1+m̃
Gij

(
1

z − pij
− 1

z − q

)
−
∑mq

l=2

∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)l−1Gij

1

(z − q)l
simplifying

=
∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)Gij

1

z − q
1

z − pij

−
∑mq

l=2

∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)l−1Gij

1

(z − q)l

regrouping
=

m∑
i=1+m̃

i∑
j=1+m̃

(pij − q)Gij
1

z − q

(
1

z − pij
− 1

z − q

)

−
∑mq

l=3

∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)l−1Gij

1

(z − q)l
simplifying

=
∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)2Gij

1

(z − q)2
1

z − pij

−
∑mq

l=3

∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)l−1Gij

1

(z − q)l
...

iterating
the above=

∑m

i=1+m̃

∑i

j=1+m̃
(pij − q)mqGij

1

z − pij
1

(z − q)mq

(56)
=

m∑
i=1+m̃

i∑
j=1+m̃

J(q − pij)−1BH∗i
−cij
z − pij

(pij − q)mq

(z − q)mq
(35)

Also, we compute
mq∑
l=2

m∑
i=1+m̃

l−2∑
k=i−1

J(0)l−2−kBH∗i

i∑
j=1+m̃

cij(p
i
j − q)k

(z − q)l

reverse
sums=

m∑
i=1+m̃

mq∑
l=i+1

l−2∑
k=i−1

J(0)l−2−kBH∗i

i∑
j=1+m̃

cij(p
i
j − q)k

(z − q)l

l′=l−2−k
k′=mq−l

=
∑m

i=1+m̃

∑mq−i−1

k′=0

∑mq−i−1−k′

l′=0

J(0)l
′
BH∗i

∑i

j=1+m̃

cij(p
i
j − q)mq−2−k

′−l′

(z − q)mq−k′
reverse
sums=

∑m

i=1+m̃

∑mq−i−1

l′=0

∑mq−i−1−l′

k′=0

J(0)l
′
BH∗i

∑i

j=1+m̃

cij(p
i
j − q)mq−2−k

′−l′

(z − q)mq−k′
.

(36)
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Furthermore, we have

m̃J(0)mq−1
∑m

i=1+m̃
BHi

1

1

(z − q)mq+1

(28)
= m̃

∑m

i=1+m̃
ci1J(0)mq−1BH∗i

1

(z − q)mq+1∑mq−1

l=0
m̃J(0)lBH1

1

1

(z − q)l+2

(28)
=
∑mq−1

l=0
m̃J(0)lBH∗1

1

(z − q)l+2
.

(37)

Substituting (35), (36), and (37) into (34) yields

Φx(z) =

(∑mq−1

l=0
J(0)lm̃

1

(z − q)l+2

)
BH∗1

+
∑m

i=1+m̃

(∑i

j=1+m̃
J(q − pij)−1

−cij
z − pij

(pij − q)mq

(z − q)mq

+

mq−i−1∑
l=0

mq−i−1−l∑
k=0

J(0)l
i∑

j=1+m̃

cij(p
i
j − q)mq−2−k−l

(z − q)mq−k

+ m̃ci1J(0)mq−1
1

(z − q)mq+1

)
BH∗i .

This completes the proof of (29).
Next we derive the upper bound of the difference from

1
(z−q)i+l+1 for the elements of the superdiagonal of the term
multiplying BH∗i . Note that, by the form of (29), all ele-
ments on each such superdiagonal are identical. By (29), for
i ∈ {1 + m̃, ...,m} and l ∈ {mq − i, ...,mq − 2}, the lth
superdiagonal of the term multiplying BH∗i in Φx(z) is(∑i

j=1+m̃
(−1)l(q − pij)−(l+1)

−cij(pij − q)mq

z − pij

)
1

(z − q)mq

=

 i∑
j=1+m̃

(−1)l+1

(−1)l+1
(pij − q)−(l+1)

cij(p
i
j − q)mq

z − pij

 1

(z − q)mq

=

(∑i

j=1+m̃
cij(p

i
j − q)mq−1−l

1

z − pij

)
1

(z − q)mq

Lemma 4(a)
=

(z − q)mq−1−l−m̃∏i
j=1+m̃(z − pij)

1

(z − q)mq
=

(z − q)−(l+1+m̃)∏i
j=1+m̃(z − pij)

where for Lemma 4(a) note that for m̃ = 1, cij contains a factor
of 1

pij−q
. For i ∈ {1+m̃, ...,m}, the (mq−1)th superdiagonal

(i.e. l = mq − 1) of the term multiplying BH∗i in Φx(z) is i∑
j=1+m̃

(−1)mq−1(q − pij)−mq
−cij(pij − q)mq

z − pij

 1

(z − q)mq

+ m̃ci1
1

(z − q)mq+1

=

 i∑
j=1+m̃

(−1)mq

(−1)mq
(pij − q)−mq

cij(p
i
j − q)mq

z − pij

 1

(z − q)mq

+ m̃ci1
1

(z − q)mq+1

=

(∑i

j=1+m̃
cij

1

z − pij

)
1

(z − q)mq
+ m̃ci1

1

(z − q)mq+1

=

(∑i

j=1+m̃
cij

1

z − pij
+ m̃ci1

1

(z − q)

)
1

(z − q)mq

=

 i∑
j=1

cij
1

z − pij

 1

(z − q)mq
[1, Eq. 7]

=
1

i∏
j=1

(z − pij)

1

(z − q)mq

=
1∏i

j=1(z − pij)
1

(z − q)l+1
.

For i ∈ {1 + m̃, ...,m} and l ∈ {0, ...,mq − i − 1}, the lth
superdiagonal of the term multiplying BH∗i in Φx(z) is(∑i

j=1+m̃
(−1)l(q − pij)−(l+1)

−cij(pij − q)mq

z − pij

)
1

(z − q)mq

+
∑mq−i−1−l

k=0

∑i

j=1+m̃
cij(p

i
j − q)mq−2−k−l

1

(z − q)mq−k

=

(∑i

j=1+m̃
cij(p

i
j − q)mq−l−1

1

z − pij

)
1

(z − q)mq

+
∑mq−i−1−l

k=0

∑i

j=1+m̃
cij(p

i
j − q)mq−2−k−l

1

(z − q)mq−k

Lemma 4(b)
=

1

(z − q)mq

(
(z − q)mq−l−1−m̃∏i

j=1+m̃(z − pij)

−
∑mq−i−1−l

k=0

∑i

j=1+m̃
cij(p

i
j − q)mq−2−k−l(z − q)k

)
+
∑mq−i−1−l

k=0

∑i

j=1+m̃
cij(p

i
j − q)mq−2−k−l

1

(z − q)mq−k
simplifying

=
1∏i

j=1+m̃(z − pij)
1

(z − q)l+1+m̃

−
∑mq−i−1−l

k=0

∑i

j=1+m̃
cij(p

i
j − q)mq−2−k−l

1

(z − q)mq−k

+
∑mq−i−1−l

k=0

∑i

j=1+m̃
cij(p

i
j − q)mq−2−k−l

1

(z − q)mq−k
cancelling

=
1∏i

j=1+m̃(z − pij)
1

(z − q)l+1+m̃

where for Lemma 4(b) note that for m̃ = 1, cij contains a
factor of 1

pij−q
. Finally, if m̃ = 1, then for i = 1 and any l ∈

{0, ...,mq − 1}, the lth superdiagonal of the term multiplying
BH∗1 in Φx(z) is given by

m̃
1

(z − q)l+2
= m̃

1

(z − q)i+l+1
.

Thus, combining the cases above, by Lemma 3 for every
i ∈ {1, ...,m} and l ∈ {0, ...,mq − 1}, each term in the
lth superdiagonal of the term multiplying BH∗i in (29) has
difference from 1

(z−q)i+l+1 bounded by Ki,lD(P).

Proof of Lemma 2. The proof begins by selecting an opti-
mal solution (Φ∗x,Φ∗u) to (2), and constructing Φu(z) =∑
p∈PHp

1
z−p by [1, Theorem 1] to approximate Φ∗u. By [1,

Theorem 1], this implies that the approximation error bounds
for Φu of (12) are satisfied. Next, Φx is defined as the unique
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solution to the SLS constraint in (4). The remainder of the
proof will show that Φx is a feasible solution to (7)-(9), and
that it satisfies the approximation error bounds of (13).

Towards that end, first it is shown that it suffices to work
in coordinates in which A is in Jordan normal form. Next it
is shown that, in these coordinates, the approximation error
bounds and the SLS constraints decouple according to each
elementary Jordan block in A, so it suffices to prove the
result for a single elementary Jordan block with eigenvalue
λ. Afterwards, it is shown that the SLS constraint uniquely
determines the poles and multiplicities of Φ̃x from those of
Φ̃u for any transfer functions (Φ̃x, Φ̃u) in 1

zRH∞ that satisfy
it. From the choice of Φu, this immediately implies that Φx
is a feasible solution to (7)-(9).

Subsequently, for each pole q in Φ∗x that appears in Φ∗u,
by [1, Theorem 1] there exist poles in Φu for approximating
the portion of Φ∗u corresponding to pole q. By the relationship
between Φu and Φx described above, we then consider the re-
sulting poles that appear in Φx, and will show that the portion
of Φx corresponding to these poles closely approximates the
portion of Φ∗x corresponding to the pole q. To do so, we fix
a pole q in Φ∗x and consider two cases: Case 1 where q 6= λ,
and Case 2 where q = λ. For each of these cases we use the
SLS constraints to determine the coefficients in the portions
of Φ∗x and Φx corresponding to pole q and the poles used
to approximate it, respectively, and then bound the resulting
approximation error. As q was arbitrary, this then yields the
desired approximation error bounds for Φx of (13).

First we obtain an optimal solution to (2), and use [1,
Theorem 1] to find Φu which closely approximates Φ∗u.
Let (Φ∗x,Φ

∗
u) be an optimal solution to (2), which ex-

ists by Assumption A6. By [1, Theorem 1], there ex-
ist coefficient matrices {Hp}p∈P such that, if we define
Φu(z) =

∑
p∈PHp

1
z−p then Φu ∈ 1

zRH∞, ||Φu − Φ∗u||H∞ ≤
Ku
∞D(P), and ||Φu − Φ∗u||H2

≤ Ku
2D(P). Define Φx(z) =

(zI −A)−1(BΦu(z) + I) and note that this implies (Φx,Φu)
satisfy the SLS constraint in (4) by construction.

As Q and σ are finite, η = minq∈Q,λ∈σ,λ 6=q d(λ, q) > 0
and d(λ, q) ≥ η for all such λ 6= q. By Assumption A5, for
every q ∈ Q and λ ∈ σ with λ 6= q, d(λ,P(q)) > 0, where
P(q) are the mq closest poles in P to q. This implies that
δ = minq∈Q,λ∈σ,λ 6=q d(λ,P(q)) > 0 and that d(λ,P(q)) ≥ δ
for all such λ 6= q.

Next we show that it suffices to work in coordinates
in which A is in Jordan normal form, and that in these
coordinates the SLS constraints decouple according to each
elementary Jordan block. There exist matrices J in Jordan
normal form and V invertible such that J = V AV −1. Fix
z ∈ ∂D for the remainder of the proof. We will show that
there exists K > 0 such that

||V Φx(z)− V Φ∗x(z)||2 ≤ KD(P). (38)

This will imply that

||Φx − Φ∗x||H∞ = sup
z∈∂D

||V −1(V Φx(z)− V Φ∗x(z))||2

≤ ||V −1||2 sup
z∈∂D

||V Φx(z)− V Φ∗x(z)||2 ≤ Kx
∞D(P)

||Φx − Φ∗x||H2
≤
√
n||Φx − Φ∗x||H∞ ≤ Kx

2D(P)

Kx
∞ = ||V −1||2K, Kx

2 =
√
nKx
∞.

So, to prove the lemma it suffices to show that (38) holds and
that (Φx,Φu) is a feasible solution to (7)-(9). Let J(λ) denote
an elementary Jordan block with eigenvalue λ in J , M |J(λ) the
restriction of the matrix M to the rows corresponding to the
rows of J(λ) in J , and M |0J(λ) the concatenation of M |J(λ)
with rows of zeros. Decomposing V Φx, V Φ∗x by rows gives

||V Φx(z)− V Φ∗x(z)||2

=

∣∣∣∣∣∣∣∣∑λ∈σ

∑
J(λ) in J

V Φx(z)|0J(λ) − V Φ∗x(z)|0J(λ)

∣∣∣∣∣∣∣∣
2

≤
∑

λ∈σ

∑
J(λ) in J

∣∣∣∣(V Φx(z))|J(λ) − (V Φ∗x(z))|J(λ)
∣∣∣∣
2
.

Thus, to prove (38) it suffices to show that for each elementary
Jordan block J(λ) in J there exists KJ(λ) > 0 such that∣∣∣∣(V Φx(z))|J(λ) − (V Φ∗x(z))|J(λ)

∣∣∣∣
2
≤ KJ(λ)D(P). (39)

Premultiplying the SLS constraint in (4) by V implies that
(zI − J)V Φx − V BΦu = V , and note that this is sat-
isfied by both (V Φx,Φu) and (V Φ∗x,Φ

∗
u). As (zI − J)

is block diagonal, this equation decouples into independent
equations for each elementary Jordan block J(λ) in J given
by (zI − J(λ))(V Φx(z))|J(λ) − (V B)|J(λ)Φu(z) = V |J(λ).
Therefore, both our objective (39) and the SLS constraints
become decoupled for each J(λ), so it suffices to prove (39)
for a single elementary Jordan block since the same argument
applies to all the elementary Jordan blocks in J . Thus, for
the remainder of the proof we fix a particular λ ∈ σ and
J(λ) in J . For notational convenience, for the remainder of
the proof we abuse notation and let Φx, Φ∗x, B, and V denote
(V Φx)|J(λ), (V Φ∗x)|J(λ), (V B)|J(λ), and V |J(λ), respectively.
Then the objective (39) and the SLS constraint become

||Φx(z)− Φ∗x(z)||2 ≤ KD(P) (40)
(zI − J(λ))Φx(z)−BΦu(z) = V. (41)

To complete the proof it suffices to show that there exists
K > 0 such that (40) holds, and that (Φx,Φu) is a feasible
solution to (7)-(9).

Let mλ denote the multiplicity of λ in J(λ). As (zI−A)−1

is strictly proper real rational and (BΦu(z) + I) is proper
real rational, their product Φx is strictly proper real rational.
Therefore, Φx has a partial fraction decomposition which does
not include any constant or polynomial terms, and in which
all poles have finite multiplicity.

Now we derive the relationship between the poles and
multiplicities of any pair of transfer functions which satisfy
the SLS constraint. Let (Φ̃x, Φ̃u) be any transfer functions
which satisfy (41) and such that Φ̃u ∈ 1

zRH∞ and Φ̃x is
strictly proper rational. Let q be any pole of Φ̃x, mq = mλ

if q = λ or mq = 0 otherwise, and m the multiplicity of q in
Φ̃u. Note that m = 0 if q is not a pole of Φ̃u. Let m̂ be the
multiplicity of q in Φ̃x. Then the terms in the partial fraction
decompositions of Φ̃u and Φ̃x corresponding to pole q are
given by

∑m
i=1H

i 1
(z−q)i and

∑m̂
i=1G

i 1
(z−q)i , respectively. By

uniqueness of the partial fraction decomposition, (41) therefore
implies that

Gi+1 = J(λ− q)Gi +BHi, i ∈ {1, ...,m} (42)
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Gi+1 = J(λ− q)Gi, i ∈ {m+ 1, ..., m̂− 1} (43)

0 = J(λ− q)Gm̂. (44)

First consider the case where λ 6= q. It is straightforward to
verify the following fact:
Fact 2. If J(λ)G = 0 for λ 6= 0 then G = 0.

Then by Fact 2 and (44), Gm̂ = 0. Proceeding downwards
in i, repeated application of Fact 2 and (43) imply that Gi = 0
for i ∈ {m + 1, ..., m̂}. So, in this case the order of q in Φ̃x
is m = m+mq . Next consider the case where λ = q. Then,
by (43), Gi = J(0)i−(m+1)Gm+1 for i ∈ {m+ 1, ..., m̂− 1}.
As J(0)mλ = 0 = J(0)mq , this implies that Gi = 0 for
i ≥ mq+m+1. So, in this case the order of q in Φ̃x is m+mq .
Combining the above cases implies the following fact: that Φ̃x
only contains poles in σ and Φ̃u, and that their multiplicities
are given by m+mq . Applying this fact to (Φx,Φu) implies
that Φx ∈ 1

zRH∞ and is a feasible solution to (7)-(9). Hence,
to complete the proof it suffices to prove (40).

In what follows, we show that to prove (13) it suffices to
fix a particular pole in Φ∗x, and to show that a certain portion
of Φx closely approximates the portion of Φ∗x corresponding
to this pole. This is done by using the construction of [1,
Theorem 1] to approximate Φ∗u by Φu. Let Q denote the poles
of Φ∗x. For each q ∈ Q, its contribution to the partial fraction
decompositions of Φ∗x and Φ∗u is given, respectively, by∑mq+m

i=1
G∗i

1

(z − q)i
,
∑m

i=1
H∗i

1

(z − q)i
(45)

by the above fact. Since Φu was constructed as in [1, Theo-
rem 1], the portion of Φu that was chosen to approximate the
pole at q in Φ∗u is given by∑m

i=1

∑i

j=1
Hi
j

1

z − pij
, Hi

j = cijH
∗
i (46)

for all i ∈ {1, ...,m} and j ∈ {1, ..., i}, where {cij}ij=1 are the
constants chosen as in [1, Corollary 2] for approximating the
pole q with multiplicity i by the poles {pij}ij=1. Let m̃ = 1 if
q = λ and Φu contains a pole at q, and m̃ = 0 otherwise. If
m̃ = 1, reorder the poles in {pij}ij=1 for each i ∈ {1, ...,m}
such that pi1 = q. Then the above fact implies that the portion
of Φx corresponding to the above portion of Φu is given by∑mq+m̃

i=1
Gi

1

(z − q)i
+
∑m

i=1+m̃

∑m

j=1+m̃
Gij

1

(z − pij)
.

(47)

Hence, from (47) and (45) we compute

||Φx(z)− Φ∗x(z)||2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
q∈Q

mq+m̃∑
i=1

Gi
1

(z − q)i
+

m∑
i=1+m̃

m∑
j=1+m̃

Gij
1

(z − pij)

−
∑

q∈Q

∑mq+m

i=1
G∗i

1

(z − q)i

∣∣∣∣∣∣∣∣
2

≤
∑
q∈Q

∣∣∣∣∣∣
∣∣∣∣∣∣
mq+m̃∑
i=1

Gi
1

(z − q)i
+

m∑
i=1+m̃

m∑
j=1+m̃

Gij
1

(z − pij)

−
∑mq+m

i=1
G∗i

1

(z − q)i

∣∣∣∣∣∣∣∣
2

so, since Q is finite, to prove (40) it suffices to show that there
exists Kq > 0 such that∣∣∣∣∣
∣∣∣∣∣∑mq+m̃

i=1
Gi

1

(z − q)i
+
∑m

i=1+m̃

∑m

j=1+m̃
Gij

1

(z − pij)

−
∑mq+m

i=1
G∗i

1

(z − q)i

∣∣∣∣∣∣∣∣ ≤ KqD(P)

(48)

for each q ∈ Q. Towards that end, fix q ∈ Q and for
the remainder of the proof let Φx(z) and Φ∗x(z) denote the
contributions to Φx(z) and Φ∗x(z) given by (47) and (45),
respectively, as in (48). We consider two cases.

Case 1: q 6= λ. Substituting (47), (46), and (45) into (42)-
(44) implies that

−J(λ− q)G∗m = BH∗m

G∗i−1 = J(λ− q)−1(G∗i −BH∗i−1), i ∈ {2, ...,m}
−J(λ− pij)Gij = BHi

j , i ∈ {1, ...,m}, j ∈ {1, .., i}

and all other coefficients in Φx and Φ∗x are zero. The above
implies that G∗l = −

∑m
i=l J(λ − q)−(i+1−l)BH∗i for all l ∈

{1, ...,m}. Define G∗(l,i) = −J(λ−q)−(i+1−l)BH∗i for all l ∈
{1, ...,m} and i ∈ {l, ...,m}, and note that G∗l =

∑m
i=lG

∗
(l,i).

Write Gij = cij(G
∗
(i,i) + ∆Gij). Then, by (46)

J(λ− q)G∗(i,i) = −BH∗i = − 1

cij
BHi

j =
1

cij
J(λ− pij)Gij

= J(λ− pij)(G∗(i,i) + ∆Gij)

= (J(λ− q)− (pij − q)I)(G∗(i,i) + ∆Gij)

so 0 = −(pij − q)G∗(i,i) + J(λ− pij)∆Gij and
∆Gij = (pij − q)J(λ− pij)−1G∗(i,i). In summary,

Φ∗x =
∑m

l=1
G∗l

1

(z − q)l
=
∑m

i=1

∑i

l=1
G∗(l,i)

1

(z − q)l

G∗(l,i) = −J(λ− q)−(i+1−l)BH∗i , l ∈ {1, ...,m}

Φx =
∑m

i=1

∑i

j=1
Gij

1

z − pij
Gij = cij(I + (pij − q)J(λ− pij)−1)G∗(i,i).

For any i ∈ {1, ...,m} and l ∈ {2, ..., i} write
J(λ − pij)

−1G∗(l,i) = G∗(l−1,i) + ∆G. Note that for i ∈
{1, ...,m} and l ∈ {2, ..., i}, J(λ− q)G∗(l−1,i) = G∗(l,i). Then

J(λ− q)G∗(l−1,i) = G∗(l,i) = J(λ− pij)(G∗(l−1,i) + ∆G)

= (J(λ− q)− (pij − q)I)(G∗(l−1,i) + ∆G)

so 0 = −(pij − q)G∗(l−1,i) + J(λ− pij)∆G and
∆G = (pij − q)J(λ− pij)−1G∗(l−1,i) which implies that
J(λ− pij)−1G∗(l,i) = (I + (pij − q)J(λ− pij)−1)G∗(l−1,i). Ap-
plying this equation recursively implies that for i ∈ {1, ...,m}
and j ∈ {1, ..., i}

Gij = cijG
∗
(i,i) + cij(p

i
j − q)J(λ− pij)−1G∗(i,i)

= cijG
∗
(i,i) + cij(p

i
j − q)(I + (pij − q)J(λ− pij)−1)G∗(i−1,i)

= cijG
∗
(i,i) + cij(p

i
j − q)G∗(i−1,i)

+ cij(p
i
j − q)2J(λ− pij)−1G∗(i−1,i) = ...
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=

i∑
l=1

cij(p
i
j − q)i−lG∗(l,i) + cij(p

i
j − q)iJ(λ− pij)−1G∗(1,i).

Therefore,

Φx(z) =

m∑
i=1

i∑
j=1

Gij
1

z − pij
above

identity
=

m∑
i=1

i∑
j=1

i∑
l=1

cij(p
i
j − q)i−lG∗(l,i)

1

z − pij

+

m∑
i=1

i∑
j=1

cij(p
i
j − q)iJ(λ− pij)−1G∗(1,i)

1

z − pij

reverse
sum order=

m∑
i=1

i∑
l=1

G∗(l,i)

 i∑
j=1

cij(p
i
j − q)i−l

1

z − pij


+

m∑
i=1

 i∑
j=1

cij(p
i
j − q)iJ(λ− pij)−1

1

z − pij

G∗(1,i)

Lemma 4(a)
=

m∑
i=1

i∑
l=1

G∗(l,i)
(z − q)i−l
i∏

j=1

(z − pij)

+

m∑
i=1

 i∑
j=1

cij(p
i
j − q)iJ(λ− pij)−1

1

z − pij

G∗(1,i).

Thus,

Φx(z)− Φ∗x(z) =

m∑
i=1

i∑
l=1

G∗(l,i)

 (z − q)i−l
i∏

j=1

(z − pij)
− 1

(z − q)l


+

m∑
i=1

 i∑
j=1

cij(p
i
j − q)iJ(λ− pij)−1

1

z − pij

G∗(1,i).

This implies

||Φx(z)− Φ∗x(z)||2
triangle

inequality
≤

m∑
i=1

i∑
l=1

||G∗(l,i)||2

∣∣∣∣∣ (z − q)i−l∏i
j=1(z − pij)

− 1

(z − q)l

∣∣∣∣∣
+

m∑
i=1

||G∗(1,i)||2

∣∣∣∣∣∣
∣∣∣∣∣∣
i∑

j=1

cij(p
i
j − q)iJ(λ− pij)−1

1

z − pij

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Lemma 3
Corollary 2(b)
≤ KD(P)

K =
∑m

i=1

∑i

l=1
||G∗(l,i)||2k(l,i) +

∑m

i=1
||G∗(1,i)||2ki

which proves (48) for Case 1.
It will be useful to derive an additional bound for use in

the proof of Case 2. In particular, we want to show that there
exist constants Ki > 0 for i ∈ {1, ...,m} such that∣∣∣∣∣∣

∣∣∣∣∣∣
i∑

j=1

Gij −G∗(1,i)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ KiD(P). (49)

Write Gij = cij(G
∗
(1,i) + ∆G). Then

J(λ− q)iG∗(1,i) = −BH∗i =
1

cij
J(λ− pij)Gij

= J(λ− pij)(G∗(1,i) + ∆G)

so ∆G = J(λ−pij)−1J(λ− q)iG∗(1,i)−G
∗
(1,i), which implies

that Gij = cijJ(λ− pij)−1J(λ− q)iG∗(1,i). Thus,∣∣∣∣∣∣
∣∣∣∣∣∣
i∑

j=1

Gij −G∗(1,i)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
i∑

j=1

cijJ(λ− pij)−1J(λ− q)iG∗(1,i)

− J(λ− q)−iJ(λ− q)iG∗(1,i)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
 i∑
j=1

cijJ(λ− pij)−1 − J(λ− q)−i
 J(λ− q)iG∗(1,i)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
i∑

j=1

cijJ(λ− pij)−1 − J(λ− q)−i
∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣∣J(λ− q)iG∗(1,i)
∣∣∣∣∣∣
2

Therefore, in order to prove (49) it suffices to show that∣∣∣∣∣∣
∣∣∣∣∣∣
i∑

j=1

cijJ(λ− pij)−1 − J(λ− q)−i
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ K ′iD(P) (50)

for some constants K ′i > 0. For l ∈ {0, ...,mq − 1}, the lth
superdiagonal of

∑i
j=1 c

i
jJ(λ− pij)−1 is given by

i∑
j=1

cij(−1)l(λ− pij)−(l+1) = (−1)l
i∑

j=1

cij(λ− pij)−(l+1)

=

(
i− 1 + l

l

)
(−1)l

(λ− q)(i+l)
+ ε(i,l), |ε(i,l)| ≤ K(i,l)D(P)

where we evaluate the sum by Corollary 2(a). Consider the
function f(x) = x−i and note that f(J(λ−q)) = J(λ−q)−i.
By [22, Theorem 11.1.1], for l ∈ {0, ...,mq − 1}, the lth
superdiagonal of J(λ− q)−i = f(J(λ− q)) is given by

1

l!
f (l)(λ− q) =

i(l)

l!

(−1)l

(λ− q)(i+l)
=

(
i− 1 + l

l

)
(−1)l

(λ− q)(i+l)
.

Thus, for each i ∈ {1, ...,m} and l ∈ {0, ...,mq − 1}, the
difference between terms in superdiagonal l of the matrix in
(50) is ε(i,l), which satisfies |ε(i,l)| ≤ K(i,l)D(P). Therefore,
by Fact 1 in the proof of Corollary 2, this implies that there
exist K ′i > 0 such that (50) holds.

Case 2: q = λ. Let Q̂ denote the poles in Φx. Substituting
(47), (46), and (45) into (42)-(44) and (41) implies that

J(0)G∗mq+m = 0, G∗1 = V −
∑

q̂∈Q
q̂ 6=q

G∗(q̂,1)

G∗i+1 = J(0)G∗i , i ∈ {m+ 1, ...,mq +m− 1}
G∗i+1 = J(0)G∗i +BH∗i , i ∈ {1, ...,m}

J(0)Gmq+m̃ = 0, G1 = V −
∑

q̂∈Q̂
q̂ 6=q

G(q̂,1)

Gi+1 = J(0)Gi, i ∈ {2, ...,mq + m̃− 1}

G2 = J(0)G1 + m̃
∑m

i=1
BHi

1
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−J(q − pij)Gij = BHi
j , i ∈ {1 + m̃, ...,m},

j ∈ {1 + m̃, ..., i}

where G∗(q̂,1) and G(q̂,1) denote the coefficients of 1
z−q̂ in Φ∗x

and Φx, respectively, for the pole q̂. For l ∈ {1, ...,mq}, define
Define Ĝ1 = G1 +

∑m
i=1+m̃

∑i
j=1+m̃G

i
j , Ĝl = J(0)l−1Ĝ1,

and Ĝ∗l = J(0)l−1G∗1. By (49) from Case 1,

||Ĝ1 −G∗1||2 ≤
∑

q̂∈Q
q̂ 6=q

∑mq̂

i=1

∣∣∣∣∣∣∣∣G∗(q̂,i,1) −∑i

j=1
Gj(q̂,i,1)

∣∣∣∣∣∣∣∣
2

≤ K1D(P), K1 =
∑

q̂∈Q
q̂ 6=q

∑mq̂

i=1
K(q̂,i).

Thus, for l ∈ {1, ...,mq} we have

||Ĝl − Ĝ∗l ||2 ≤ ||J(0)l−1||2||Ĝl − Ĝ∗l ||1 ≤ KlD(P)

where Kl = ||J(0)l−1||2K1. For l ∈ {2, ...,mq + m̃} define

G̃1 = G1 − Ĝ1 = −
∑m

i=1+m̃

∑i

j=1+m̃
Gij

G̃l = Gl − Ĝl = −J(0)l−1
∑m

i=1+m̃

∑i

j=1+m̃
Gij

+ J(0)l−2m̃
∑m

i=1
BHi

1

(51)

G̃∗1 = G∗1 − Ĝ∗1 = 0, G̃∗l = G∗l − Ĝ∗l =
∑min{l−1,m}

i=1
G∗(l,i)

G∗(l,i) = J(0)l−(i+1)BH∗i , i ∈ {1, ...,min{l − 1,m}}.
(52)

Then we have

||Φx(z)− Φ∗x(z)||2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
mq+m̃∑
i=1

G̃i
1

(z − q)i
+

m∑
i=1+m̃

m∑
j=1+m̃

Gij
1

(z − pij)

−
mq+m∑
i=1

G̃∗i
1

(z − q)i

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
mq∑
i=1

(Ĝi − Ĝ∗i )
1

(z − q)i

∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
mq+m̃∑
i=1

G̃i
1

(z − q)i
+

m∑
i=1+m̃

m∑
j=1+m̃

Gij
1

(z − pij)

−
mq+m∑
i=1

G̃∗i
1

(z − q)i

∣∣∣∣∣
∣∣∣∣∣
2

+ K̂D(P), K̂ =

mq∑
l=1

Kl
1

(1− |q|)l
.

(53)

So, for the remainder of the proof let Φx and Φ∗x denote

Φx(z) =

mq+m̃∑
i=1

G̃i
1

(z − q)i
+

m∑
i=1+m̃

m∑
j=1+m̃

Gij
1

(z − pij)
(54)

Φ∗x(z) =
∑mq+m

i=1
G̃∗i

1

(z − q)i
, (55)

and let Gi and G∗i denote G̃i and G̃∗i , respectively. Thus, to
prove (48), by (53) it suffices to show that there exists K > 0
such that ||Φx(z)− Φ∗x(z)||2 ≤ KD(P). By (46) we have

Gij = −J(q − pij)−1BHi
j = −cijJ(q − pij)−1BH∗i (56)

for all i ∈ {m̃+1, ...,m} and j ∈ {m̃+1, ..., i}. We compute

Φx(z)

(51)
(54)
=

m∑
i=1+m̃

i∑
j=1+m̃

Gij
1

z − pij

+ m̃

mq+1∑
l=2

J(0)l−2
m∑
i=1

BHi
1

1

(z − q)l

−
mq∑
l=1

J(0)l−1
m∑

i=1+m̃

i∑
j=1+m̃

Gij
1

(z − q)l

Lemma 6
=

(
mq−1∑
l=0

J(0)lm̃
1

(z − q)l+2

)
BH∗1

+

m∑
i=1+m̃

 i∑
j=1+m̃

J(q − pij)−1
−cij
z − pij

(pij − q)mq

(z − q)mq

+

mq−i−1∑
l=0

mq−i−1−l∑
k=0

J(0)l
i∑

j=1+m̃

cij(p
i
j − q)mq−2−k−l

(z − q)mq−k

+ m̃ci1J(0)mq−1
1

(z − q)mq+1

)
BH∗i .

By (55) and (52) we have

Φ∗x =
∑m

i=1

∑mq−1

l=0
J(0)lBH∗i

1

(z − q)i+l+1
.

Therefore, for i ∈ {1, ...,m} and l ∈ {0, ...,mq − 1}, the lth
superdiagonal of the term multiplying BH∗i in Φ∗x is given by

1
(z−q)i+l+1 . Thus, by Lemma 6, for every j, j′ ∈ {1, ...,mq},

∣∣(Φx(z)− Φ∗x(z))(j,j′)
∣∣ ≤ m∑

i=1

mq−j∑
l=0

Ki,lD(P)|(BH∗i )(j+l,j′)|

≤ K(j,j′)D(P), K(j,j′) =

m∑
i=1

mq−j∑
l=0

Ki,l||BH∗i ||F .

By Fact 1 in the proof of Corollary 2, this implies that
||Φx(z)−Φ∗x(z)||2 ≤ KD(P) for some K > 0, which proves
(48) for Case 2.

Theorem 1 applies the approximation error bounds of
Lemma 2 to the optimal solution of (2) to obtain the desired
suboptimality bounds.

Proof of Theorem 1. Let (Φ∗x,Φ
∗
u) be an optimal solution to

(2). By Lemma 2, there exist Φx,Φu ∈ 1
zRH∞ which are a

feasible solution to (7)-(9) and satisfy the approximation error
bounds (12)-(13). Letting J(Φx,Φu) denote the value of the
objective of (2) for (Φx,Φu), we compute

J(P)

definition
of optimum
≤ J(Φx,Φu)

adding
zero=

∣∣∣∣∣∣C(Φx(z)− Φ∗x(z) + Φ∗x(z))B̂

+D(Φu(z)− Φ∗u(z) + Φ∗u(z))B̂ − Tdesired(z)
∣∣∣∣∣∣
H2

+ λ
∣∣∣∣∣∣C(Φx(z)− Φ∗x(z) + Φ∗x(z))B̂

+D(Φu(z)− Φ∗u(z) + Φ∗u(z))B̂ − Tdesired(z)
∣∣∣∣∣∣
H∞
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triangle
inequality
≤

∣∣∣∣∣∣CΦ∗x(z)B̂ +DΦ∗u(z)B̂ − Tdesired(z)
∣∣∣∣∣∣
H2

+ λ
∣∣∣∣∣∣CΦ∗x(z)B̂ +DΦ∗u(z)B̂ − Tdesired(z)

∣∣∣∣∣∣
H∞

+
∣∣∣∣∣∣C(Φx(z)− Φ∗x(z))B̂

∣∣∣∣∣∣
H2

+
∣∣∣∣∣∣D(Φu(z)− Φ∗u(z))B̂

∣∣∣∣∣∣
H2

+ λ
∣∣∣∣∣∣C(Φx(z)− Φ∗x(z))B̂

∣∣∣∣∣∣
H∞
+ λ

∣∣∣∣∣∣D(Φu(z)− Φ∗u(z))B̂
∣∣∣∣∣∣
H∞

(12)
(13)
≤ J∗ +KD(P)

K = ||C||FKx
2 ||B̂||F + ||D||FKu

2 ||B̂||F
+ λ||C||2Kx

∞||B̂||2 + λ||D||2Ku
∞||B̂||2.

This yields the desired bound

J(P)− J∗

J∗
≤ K

J∗
D(P)

where K = K(Q, G∗(q,j), H
∗
(q,j), r, δ) by the proofs of [1,

Theorem 1] and Lemma 2.

Proof of Corollary 1. Combining Theorem 1 with the result
and proof of [1, Theorem 5] yields the desired result.

VI. CONCLUSION

This work combined SLS with SPA to develop a new control
design method. Unlike DBC, SPA does not result in deadbeat
control, feasibility is automatic so it does not require slack
variables which lead to additional suboptimality, and it can be
solved by a single SDP, as opposed to the iterative algorithm
that DBC requires. A suboptimality certificate was provided
for SPA which, unlike the DBC bound, does not require
a sufficiently long time horizon that the optimal impulse
response has already decayed, and does not depend on this
decay rate. The bound is specialized for the Archimedes
spiral pole selection [1]. An example shows that SPA achieves
much better matching with the optimal solution than DBC
with orders of magnitude fewer poles. Future work should
address extensions to state and input constraints, application
of SPA to output feedback, extensions to continuous-time,
static controllers, and extensions to time-varying systems and
uncertainty.
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