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Abstract— Design of optimal linear feedback controllers is
a challenging but important problem in many applications.
The main difficulties arise from nonconvexity and infinite
dimensionality of the associated optimization problem for the
design. A promising recent approach to address these challenges
is to first use system level synthesis to render the problem
convex using a clever reparameterization, and then to apply an
approximation by simple poles to obtain a finite dimensional
problem. However, when computing H2 and H∞ norms, this
prior approach requires an additional approximation of a finite
time horizon for the closed-loop impulse response. This finite
horizon results in increased suboptimality, degraded perfor-
mance, and increased problem size and memory requirements.
To address these limitations, we present a novel control design
framework that combines the frequency domain system level
synthesis constraints with a state space formulation of the H2

and H∞ norms using linear matrix inequalities. This state
space formulation eliminates the need for a finite time horizon
approximation, and results in a convex and tractable semidefi-
nite program for the control design. To preserve robustness, in
practice it is important that controllers only contain a relatively
small number of poles. Therefore, we propose to make an
optimal sparse selection of simple poles from a large initial
collection to maintain robustness while improving performance.
As this sparsity constraint is nonconvex, we use group lasso
regularization to enforce sparsity while maintaining convexity
for the control design. Finally, the superior performance of
the proposed method is illustrated on an example of power
converter control design.

I. INTRODUCTION

Optimal linear feedback control design is a challenging but
valuable problem. The first major difficulty is that the design
problem is nonconvex in the controller. Convex reparame-
terization, which involves a change of variables to render
the optimization problem convex, is one approach to address
this. A classical example is the Youla parametrization [1],
while more recent methods include system level synthesis
(SLS) [2] and the input output parametrization (IOP) [3].
The SLS and IOP methods have several advantages over
Youla parameterization [4], including directly parameterizing
the control design via the closed-loop system responses. For
this work we are interested in state feedback design, whereas
IOP is primarily intended for output feedback, and therefore
focus on SLS.

Convex reparameterization methods result in convex con-
trol design problems, yet remain infinite dimensional and,
hence, intractable in general. Different finite dimensional
approximation methods have been proposed with SLS to
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tackle this. In [5], the finite impulse response (FIR) approx-
imation is used for the closed-loop system responses. This
requires all closed-loop poles to lie at the origin, causing
infeasibility for stabilizable but uncontrollable systems, high
computational cost in systems with large separation of time
scales, inability to incorporate prior knowledge about optimal
closed-loop poles, and results in deadbeat control, which
often has poor robustness to uncertainty and disturbances
due to large control gains. The simple pole approximation
(SPA) [6] was developed to circumvent these drawbacks
by using poles of multiplicity one (i.e., simple poles) to
approximate the closed-loop system responses. SPA gives
the designer the freedom to form an approximation using
any finite selection of stable poles in the unit disk that are
closed under complex conjugation, and can therefore easily
include prior knowledge about optimal closed-loop poles.

In prior work [7], SLS and SPA were combined in an
attempt to solve the mixed H2/H∞ control design prob-
lem. However, to compute the H2 and H∞ norms of the
closed-loop system responses, [7] uses finite time horizon
approximations of the closed-loop impulse response and
convolution operators. This results in increased suboptimality
leading to degraded performance, higher memory and storage
requirements, and longer runtimes. Furthermore, in [7] a
heuristic is used for the selection of the simple poles, without
any attempt to choose them optimally, which results in
increased suboptimality as well.

A hybrid state space and frequency domain formulation
of the mixed H2/H∞ optimal control design is proposed
to address the limitations of SLS with SPA. SLS requires
additional constraints, which are affine if expressed in the
frequency domain. Therefore, our method maintains this
frequency domain representation of the SLS constraints.
However, unlike in prior work [7], we use the Kalman-
Yakubovich-Popov (KYP) lemma to express the H2 and H∞
norms of the closed-loop system responses in state space
in the form of linear matrix inequalities (LMIs). To do so,
we use the simple pole approximation to obtain state space
realizations of the closed-loop system responses. Our method
does not require any finite time horizon approximation,
and thus does not suffer from the drawbacks discussed
above. The resulting control design problem is a convex
and tractable semidefinite program which can be solved
accurately and efficiently.

The heuristic selection of simple poles in [7] requires a
large number of poles to reduce the suboptimality of the
approximation. However, this increases the computational
cost of the design problem, and reduces the robustness
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of the resulting controller. Therefore, we propose to start
with a large collection of potential poles, and choose the
sparse selection from them that results in optimal fixed-
order performance. As this sparsity constraint is nonconvex,
we adopt the group lasso method [8], an extension of the
lasso method (i.e., l1 regularization) to selection of grouped
factors, to enforce sparsity while maintaining convexity. This
preserves tractability of the control design method, while
reducing suboptimality of the closed-loop pole selection.
An example of power converter control design demonstrates
superior performance of the method.

The rest of this paper is structured as follows. Section II
introduces the problem formulation. Section III provides a
valuable state space realization of the closed-loop system.
The main results on the novel control design method are
shown in Section IV. The derivation of the control design
methods is presented in Section V. A numerical example is
provided in Section VI. Finally, Section VII offers conclud-
ing remarks.

Notation: The superscript “⊺” and Tr{·} denote the trans-
pose and trace of a matrix, respectively. For a complex
number z, let Re(z), Im(z), and z represent the real part,
imaginary part, and complex conjugate of z. For any matrix
A, its Frobenius norm is written as ∥A∥F =

√
A⊺A, and we

define δ(A) = 1 if A is nonzero and δ(A) = 0 if A = 0.
We say a matrix A is Schur if all of its eigenvalues have
modulus less than one. A positive definite (semidefinite)
matrix P is denoted by P ≻ 0(P ⪰ 0). The set of real
(symmetric) matrices of dimension n × m(n) is denoted
by Rn×m(Sn). 0n and In are the n × n zero and identity
matrices, and n is often omitted if there is no ambiguity.
For any set S, let |S| be its cardinality (i.e., the number of
elements it contains). Let M denote a collection of matrices
{Mi}li=1, define the block diagonal concatenation operator

by D (M) :=

[
M1 . . .

Mℓ

]
where the off-diagonal entries

are all zero, and define the block row concatenation operator
by R(M) :=

[
M1 . . . Ml

]
. The operator ⊗ denotes the

Kronecker product between any two matrices. We denote
the set of real, rational, proper, and stable transfer function
matrices as RH∞, and the subset of RH∞ that are strictly
proper as 1

zRH∞.

II. PROBLEM STATEMENT AND BACKGROUND

Consider the linear time-invariant (LTI) system in discrete
time described by the following state space representation:

x(k + 1) = Ax(k) +Bu(k) + B̂w(k)

y(k) = Cx(k)
(1)

where x(k) ∈ Rn, u(k) ∈ Rp, w(k) ∈ Rq , y(k) ∈
Rm are the state, controller signal, disturbance input, and
performance output vectors at time step k, respectively. It
will be useful to define the signal v(k) = B̂w(k).

Consider a linear state feedback control law of the form
u(z) = K(z)x(z) where K is a dynamic controller. The
closed-loop transfer function mapping disturbance w to out-
put y is Tw→y(z), and Tw→u(z), Tv→x(z), and Tv→u(z) are

defined analogously. Let Tdes(z) be some desired closed-loop
transfer function for model matching control design, which
can also be set to zero if preferred.

The goal of this paper is to design a controller K(z) that
is a solution to the mixed H2/H∞ control design problem
given by

min
K(z)

∥∥∥∥[Q 0
0 R

] [
Tw→y(z)− Tdes(z)

Tw→u(z)

]∥∥∥∥
H2/H∞

s.t. Tv→x(z), Tv→u(z) ∈
1

z
RH∞

(2)

where the mixed H2/H∞ norm is given by ∥T∥H2/H∞ =
∥T∥H2

+ λ∥T∥H∞ for some constant λ ∈ [0,∞]. The con-
stant matrices Q and R represent the weights on output and
input, respectively. Note that (2) is nonconvex in K(z) since
Tw→y(z) and Tw→u(z) are, so this problem is challenging
to solve in this form.

Using SLS, (2) can be equivalently reformulated as follows
(we refer the reader to [2] for further details about SLS)

min
Φx(z),Φu(z)

∥∥∥∥[Q 0
0 R

] [
Φ̃x(z)− Tdes(z)

Φ̃u(z)

]∥∥∥∥
H2/H∞

(3a)

s.t. (zI −A)Φx(z)−BΦu(z) = I (3b)

Φx(z),Φu(z) ∈
1

z
RH∞ (3c)

where Φx(z) and Φu(z) are the design variables and
represent the closed-loop transfer functions Tv→x(z) and
Tv→u(z), respectively, and where Φ̃x(z) = Tw→y(z) =
CΦx(z)B̂ and Φ̃u(z) = Tw→u(z) = Φu(z)B̂. Note that
(3c) ensures stability and well-posedness of the closed-loop
system. SLS requires the additional affine constraint (3b).
Note that (3) is now convex, although still infinite dimen-
sional as Φx(z) and Φu(z) lie in the infinite dimensional
function space 1

zRH∞.
To circumvent this issue, [7] approximates the closed-loop

transfer functions using a finite selection of simple stable
poles P , closed under complex conjugation, as

Φx(z) =
∑
p∈P

Gp
1

z − p
, Φu(z) =

∑
p∈P

Hp
1

z − p
, (4)

where Gp and Hp are (complex) coefficient matrices for each
p ∈ P . This simple pole approximation (SPA) renders (3)
finite dimensional. In [6] it is proposed to select the closed-
loop poles P along an Archimedes spiral in the unit disk. It
was then shown in [7, Corollary 1] that for this pole selection,
the solution to (3) with the SPA (4) satisfies the following
suboptimality bound

J (Pn)− J∗

J∗ ≤ K̂√
n
, (5)

where K̂ is a constant that depends on the ground-truth
optimal solution, J∗ is the ground-truth optimal cost of
problem (3), and J (Pn) is the optimal cost of (3) with the
SPA (4) for the selection Pn of n poles from the Archimedes
spiral. By (5), the suboptimality of the solution of SLS with
SPA will tend to zero as the number of poles approaches



infinity. However, (5) was derived under the assumption that
(3) with (4) could be solved exactly, but this was not the
case in [7] due to a finite time horizon approximation used
to calculate the H2 and H∞ norms, so the suboptimality
may not tend to zero as the number of poles diverges for the
method in [7].

For SPA, since Φx(z) and Φu(z) are real, it is straightfor-
ward to show that for any real pole p, Gp and Hp are real,
and for any complex pole p, Gp = Gp and Hp = Hp. Let
Pr denote the real poles in P , and let Pc denote its complex
poles. Then P = Pr ∪ Pc.

III. CLOSED-LOOP REALIZATION

To derive the proposed hybrid state space and frequency
domain control design method, we will require state space
realizations of the closed-loop transfer functions. In this sec-
tion, we propose novel state space realizations of the closed-
loop dynamics based on the simple pole approximation.

For any p ∈ Pc, its conjugate p is also in Pc, their
corresponding coefficient matrices are:

Gp = Re(Gp) + Im(Gp)j, Gp = Re(Gp)− Im(Gp)j,

Hp = Re(Hp) + Im(Hp)j, Hp = Re(Hp)− Im(Hp)j.
(6)

We first find real state space realizations for Φ̃x(z) and
Φ̃u(z). To do so, for each complex conjugate pair p, p ∈ Pc,
define the matrix

M(p) =

[
Re(p) Im(p)
−Im(p) Re(p)

]
,

and let Mc be the collection of M(p) for all such complex
conjugate pairs. Let Mr be the collection of each scalar
matrix p for all p ∈ Pr. Then we can define

A =

[
D(Mr)

D(Mc)

]
⊗ I,

B =
[
I · · · I 2I 0 · · · 2I 0

]︸ ︷︷ ︸
|Pr|

︸ ︷︷ ︸
|Pc|

⊺
B̂.

Next, for each complex conjugate pair p, p ∈ Pc, define
the matrices

G(p) =
[
Re(Gp) Im(Gp)

]
, H(p) =

[
Re(Hp) Im(Hp)

]
,

and let Gc and Hc be the collection of G(p) and H(p),
respectively, for all such complex conjugate pairs. Let Gr

and Hr be the collection of Gp and Hp, respectively, for
each p ∈ Pr. Then we define

Cx = C
[
R(Gr) R(Gc)

]
,

Cu =
[
R(Hr) R(Hc)

]
.

It is straightforward to verify that (A,B,Cx, 0) is a real
state space realization of Φ̃x(z), and that (A,B,Cu, 0) is
a real state space realization of Φ̃u(z). To see this, first
note that Φ̃x(z) and Φ̃u(z) can be decomposed into the
contributions from individual real poles and from complex

conjugate pairs of poles since A is block diagonal. For any
real pole p, it follows

CGp

[
zI − pI

]−1
B̂ = CGp

1

z − p
B̂.

For any complex conjugate pair of poles p and p,

[Re(Gp) Im(Gp) ]

[
zI − Re(p)I −Im(p)I

Im(p)I zI − Re(p)I

]−1 [
2I
0

]
= [Re(Gp) Im(Gp) ]

1

(z − p)(z − p)

[
2zI − 2Re(p)I
−2Im(p)I

]
=
2zRe(Gp)− 2Re(Gp)Re(p)− 2Im(Gp)Im(p)

(z − p)(z − p)

(6)
=Gp

1

z − p
+Gp

1

z − p
(7)

and C
(
Gp

1
z−p +Gp

1
z−p

)
B̂ can be obtained by left multi-

plying (7) by C and right multiplying (7) by B̂. Therefore
(A,B,Cx, 0) is a real state space realization of Φ̃x(z),
and (A,B,Cu, 0) can be shown to be a real state space
realization of Φ̃u(z) analogously.

Let (Ades, Bdes, Cdes, 0) be any real state space realization
of Tdes. Now we can represent the transfer function in the
objective (3a) using the following real state space realization

Ã =

[
A 0
0 Ades

]
, B̃ =

[
B

Bdes

]
, C̃ =

[
QCx −QCdes

RCu 0

]
,

(8)
which satisfies

C̃(zI − Ã)−1B̃ =

[
Q 0
0 R

] [
Φ̃x(z)− Tdes(z)

Φ̃u(z)

]
=: Φ(z).

(9)

Thus, we have obtained an equivalent state space representa-
tion of the closed-loop transfer function Φ(z), which will be
used to develop our novel control design method. Note that
for a fixed collection of simple poles P , as used for SPA, Ã
and B̃ are constant matrices, and C̃ is an affine function of
all of the variable coefficients Gp and Hp.

IV. MAIN RESULTS

A. Hybrid State Space and Frequency Domain Design

In this section we present our hybrid state space and
frequency domain control design method which does not
require any finite time horizon approximations for computing
the H2 and H∞ norms of the closed-loop transfer functions.
As a result, it has reduced suboptimality, better performance,
and lower computational cost compared to prior work [7].
The full derivation of the method is presented in Section V,
but the key idea is to use the state space realizations
provided in Section III together with the KYP lemma to
derive an equivalent state space representation of the H2 and
H∞ norms of the closed-loop transfer functions as LMIs.
However, the additional SLS constraints required for the
SLS formulation no longer remain affine if we represent
them in state space, so we choose to retain their frequency
domain representation. Combining these two representations,



we obtain the following control design formulation for the
solution to (3) with the SPA (4)

min
K1,K2,Z,Gp,Hp,γ1,γ2

γ1 + λγ2 (10a)

s.t.

 K1 K1Ã K1B̃

Ã⊺K1 K1 0

B̃⊺K1 0 γ1I

 ≻ 0 (10b)

 K1 0 C̃(Gp, Hp)
⊺

0 I 0

C̃(Gp, Hp) 0 Z

 ≻ 0 (10c)

Tr(Z) < γ1 (10d)
K2 0 Ã⊺K2 C̃(Gp, Hp)

⊺

0 γ2I B̃⊺K2 0

K2Ã K2B̃ K2 0

C̃(Gp, Hp) 0 0 γ2I

 ≻ 0 (10e)

∑
p∈Pr

Gp + 2
∑
p∈Pc

Re(Gp) = I (10f)

(pI −A)Gp −BHp = 0, p ∈ Pr

(10g)
(Re(p)I −A)Re(Gp)− Im(p)Im(Gp)−BRe(Hp) = 0, p ∈ Pc

(10h)
(Re(p)I −A)Im(Gp) + Im(p)Re(Gp)−BIm(Hp) = 0, p ∈ Pc

(10i)

where K1,K2 ∈ Sn×|P|, Z ∈ Sm, and γ1, γ2 are scalar
variables that represent the H2 and H∞ norms of the closed-
loop transfer functions, respectively. Recall that Ã, B̃, and
C̃ were defined in (8), but we write C̃ = C̃(Gp, Hp) to
emphasize that C̃ is an affine function of the coefficients Gp

and Hp for all p ∈ P . Since, using SPA, we have already
selected the closed-loop poles P , Ã and B̃ are constant
matrices, along with A, B, and C. Thus, the objective
(10a) is linear, the constraints (10g)-(10i) are linear, the
constraint (10f) is affine, and the constraints (10b)-(10e) are
LMIs in the decision variables. Therefore, overall (10) is
a convex semidefinite program (SDP) that can be solved
efficiently. Note that the state space realizations of the closed-
loop transfer functions from Section III were deliberately
constructed to ensure that the constraints (10b)-(10e) become
LMIs rather than nonconvex bilinear matrix inequalities by
including all the decision variables Gp, Hp in C̃ and leaving
Ã, B̃ as constant matrices.

As we will see in Section V, the objective (10a) and
constraints (10b)-(10e) are derived from a state space repre-
sentation, whereas the constraints (10f)-(10i) represent the
SLS constraints in the frequency domain, which together
yield a truly hybrid control design. Notably, the design
method (10) exactly determines the H2 and H∞ norms of the
closed-loop transfer function, whereas [7] using Frobenius
and spectral norms, respectively, to approximate them over
a finite time horizon. The error of this finite time horizon
approximation is thus entirely eliminated by the proposed
design approach. As a result, for the Archimedes spiral pole
selection proposed in [6], the suboptimality bound (5) from
[7] applies exactly to (10), and ensures that the suboptimality

converges to zero as the number of poles approaches infinity.
As we will see in the numerical example in Section VI, even
a small number of poles can often result in low suboptimality,
and thus good performance, in practice.

B. Design with Sparsity-Promoting Pole Selection
As mentioned in Section IV-A, increasing the number of

poles in the SPA pole selection will reduce the suboptimality,
but it also reduces robustness of the resulting controller.
Therefore, it is valuable to start with a large initial selection
of poles, and then to use a sparsity constraint to optimally
select a smaller number of final closed-loop poles. Towards
that end, we introduce the sparsity constraint∑

p∈P
δ(Gp) ≤ l,

∑
p∈P

δ(Hp) ≤ l (11)

into the problem (10), where l is a positive integer, to limit
the number of nonzero coefficient matrices Gp of Φx and Hp

of Φu. Note that for any pole p ∈ P such that Gp = 0 and
Hp = 0, that pole will not appear in the closed-loop transfer
functions Φx and Φu, and therefore will not influence these
closed-loop dynamics. Thus, (11) ensures that only a sparse
selection of at most l closed-loop poles will be selected in
the final control design. Choosing state space realizations for
the final controller as in [2, Section 4], this will also impose
a fixed-order constraint on the controller itself, and one can
choose l to achieve any desired controller order.

Unfortunately, (11) is nonconvex, so to retain a tractable
convex formulation for the control design while still enforc-
ing sparsity, we instead use a convex regularization term in
the objective. In particular, since the sparsity constraint in
(11) involves coefficient matrices rather than scalars, group
lasso, as an extension of lasso or l1-norm regularization, is
used to enforce sparsity of these matrices [8]. To do so, we
take the Frobenius norm of the coefficient matrices, resulting
in modifying the objective function (10a) to include a penalty
term as follows

γ1 + λγ2 + σx

∑
p∈P

∥Gp∥2F + σu

∑
p∈P

∥Hp∥2F , (12)

where σx, σu > 0 are scalar weights that determine our
emphasis on the sparsity of the pole selection according to
the objective (3a). In particular, increasing σx and σu will
typically result in a smaller pole selection. Combining this
new objective function (12) with our previous constraints
(10b)-(10i) results in a new optimization problem which
allows us to make a sparse selection of poles from a large
initial collection. Then, after making this optimal selection
of closed-loop poles, we can use the control design method
from Section IV-A for the final control design. As the con-
straints (10b)-(10i) are linear matrix inequalities and affine
equalities, and since the objective function (12) is quadratic,
this new optimization problem for the sparse pole selection
is a convex conic program that can be solved efficiently. The
example of Section VI demonstrates that the optimal sparse
pole selection using the method from this section shows
superior performance compared to the spiral pole selection
of [6].



V. CONTROL DESIGN DERIVATION

This section presents the derivation of our control design
optimization problem (10). We begin with the problem
formulation of SLS (3) together with SPA (4). First we will
derive the representation of the SLS constraints (3b) for SPA,
and then we will derive the state space representation of the
objective function (3a).

For the SLS constraint (3b), substituting in the SPA (4)
and matching coefficients of 1

z−p for each pole p ∈ P since
these functions are linearly independent, we obtain

I =
∑
p∈Pr

Gp + 2
∑
p∈Pc

Re(Gp) (13)

for the constant term,

0 = (pI −A)Gp −BHp (14)

for each p ∈ Pr, and

0 = (Re(p)I −A)Re(Gp)− Im(p)Im(Gp)−BRe(Hp)

0 = (Re(p)I −A)Im(Gp) + Im(p)Re(Gp)−BIm(Hp)
(15)

for each complex conjugate pair p, p ∈ Pc. Thus, the
SLS constraint (3b) with the SPA (4) can be equivalently
represented using (13)-(15).

Next, we will express the H2 and H∞ norms of the closed-
loop transfer functions from the objective function (3a) using
a state space representation. To do so, we begin with the
real state space realization (Ã, B̃, C̃, 0) from (8), which is
a realization of the closed-loop transfer function Φ(z) by
(9). In order to calculate the objective (3a), we need to
express ∥Φ(z)∥H2

and ∥Φ(z)∥H∞ in terms of LMIs using a
state space representation. To accomplish this, we apply the
KYP lemma to obtain bounds on the H2 and H∞ norms of
our state space representation (Ã, B̃, C̃, 0). This yields the
following result from [9, Section 4.6]

Theorem 1: For the transfer function Φ(z) = C̃(zI −
Ã)−1B̃, if Ã is Schur then the following statements hold.

(1) ∥Φ(z)∥H2
< γ1 if and only if there exist K1 ∈ Sn×|P|,

Z ∈ Sm, such that K1 K1Ã K1B̃

Ã⊺K1 K1 0

B̃⊺K1 0 γ1I

 ≻ 0,

K1 0 C̃⊺

0 I 0

C̃ 0 Z

 ≻ 0,

Tr(Z) < γ1.

(16)

(2) ∥Φ(z)∥H∞ < γ2 if and only if there exists K2 ∈
Sn×|P|, 

K2 0 Ã⊺K2 C̃⊺

0 γ2I B̃⊺K2 0

K2Ã K2B̃ K2 0

C̃ 0 0 γ2I

 ≻ 0. (17)

Note that Ã is Schur by construction because its eigen-
values consist of the poles P from SPA, which all lie
inside the unit disk, so the assumptions of Theorem 1 are

automatically satisfied. To use Theorem 1 to reexpress the
objective function (3a), we note that

min
Φ(z)∈ 1

zRH∞

∥Φ(z)∥H2
+ λ∥Φ(z)∥H∞

is equivalent to

min
γ1,γ2,Φ(z)∈ 1

zRH∞

γ1 + λγ2 (18a)

s.t. ∥Φ(z)∥H2 < γ1 (18b)
∥Φ(z)∥H∞ < γ2 (18c)

since the two inequalities ∥Φ(z)∥H2
< γ1 and ∥Φ(z)∥H∞ <

γ2 will become tight at optimality. Now we can apply
Theorem 1 to (18) to express the objective function (3a)
equivalently in terms of LMIs. Thus, combining (16), (17),
(18a), and (13)-(15), we arrive at the final control design
optimization problem (10), which is equivalent to (3) with
the SPA (4).

VI. NUMERICAL EXAMPLE

In this section, we demonstrate the proposed control
synthesis method on the control of a wind turbine interfaced
to the power grid via a power converter. We model the
turbine and converter system using the model proposed in
[10]. Let w represent the frequency and voltage magnitude
at the connection point, and let y represent the power output
of the converter. Then this can be formulated in the form of
(1) with matrices given by

A =

[
0.8046 0 0 0 0

0 0 0.1177 −0.0112 −0.1332
1 0 0 0 0
0 0 0 0.9889 0
0 0 0 0 0

]
, B =

[
0 0
0 0
0 0

0.0111 0
0 1

]
,

C =
[

0 0.9066 −0.0364 1.0218 0
0 0.364 0.9066 −0.2406 −1.0201

]
, B̂ =

[
−0.4885 0

0 1.0069
2.5 0
0 0
0 0

]
,

Ades =
[

0.944
0.944

]
, Bdes =

[
−1.1052

−1.1389

]
, Cdes = I2.

For the control design, we choose Q = I2, R = 0.01I2,
and λ = 0.5. For the sparsity-promoting optimization, we
choose σx = 1, σu = 0.01. For the SPA pole selection
P , we set the maximum number of closed-loop poles at
l = 10. To form P we first incorporate the plant poles and
the poles of the desired transfer function. The remaining
poles are chosen using two different methods. The first
method, which we call the spiral method, involves selecting
the remaining poles along an Archimedes spiral as in [6].
The second method, which we call the sparsity-promoting
method, involves initially using a spiral which results in an
initial collection of 50 poles, and then applying the sparsity-
promoting optimization problem from Section IV-B to select
the optimal 10 poles for P based on the coefficients with the
10 largest Frobenius norms. We also compare the proposed
hybrid state space and frequency domain control design
method, which we call the hybrid domain method, to the
finite time horizon approximation method from [7] with 30
time steps. We solve the SDP for the control design and
the conic program for the sparsity-promoting optimization
using MOSEK [11] in conjunction with YALMIP [12] in
MATLAB.
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Fig. 1. Step responses of the desired transfer function (Desired TF) and
of the solutions of the finite time horizon approximation method with spiral
pole selection (Finite Time Horizon), the hybrid domain method with spiral
pole selection (Spiral Hybrid), and the hybrid domain method with sparsity-
promoting pole selection (Sparse Hybrid).

The step responses for the desired transfer function and the
solutions of the finite time horizon approximation method
with spiral pole selection [7], the hybrid domain method
with spiral pole selection, and the hybrid domain method
with sparsity-promoting pole selection are shown in Fig. 1.
The proposed hybrid domain method shows much closer
matching to the desired step response than the finite time
horizon approximation method, even though both methods
use the same spiral pole selection, indicating that the absence
of truncation error leads to improved performance for our
proposed approach. In particular, the finite time horizon
approximation method has a much larger deviation and
longer transient during the step response. Furthermore, the
sparsity-promoting pole selection leads to closer matching to
the desired step response than the spiral pole selection, both
of which use the hybrid domain method, which suggests that
the proposed sparse selection of optimal poles leads to im-
proved performance as well. More specifically, the sparsity-
promoting pole selection yields almost perfect matching
with the desired response, whereas the spiral selection takes
longer to converge to the correct steady state.

VII. CONCLUSION

In this paper, a novel hybrid state space and frequency
domain method for mixed H2/H∞ control design was devel-
oped. The method uses SLS with SPA, but unlike prior work
it does not require any finite time horizon approximations to
evaluate the H2 and H∞ norms of the closed-loop transfer
functions. Therefore, it has reduced suboptimality, improved
performance, and less computational cost than prior meth-
ods. The state space representations were derived using
the KYP lemma applied to a deliberately constructed state
space realization in order to obtain a convex and tractable
SDP for the control design consisting of LMIs and affine
constraints, which can be solved efficiently. To further reduce
suboptimality, a sparsity-promoting optimization method was
developed to optimally select a small number of poles from
a larger initial collection for use in the control design. This
optimization problem was a convex conic program, which

again can be efficiently solved. The hybrid domain control
design method and the sparsity-promoting optimization were
demonstrated on the test case of control design for a wind
turbine with power converter interface, and showed superior
performance compared to the prior methods. Future work
will involve extensions to output feedback and continuous-
time control design methods.
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